Deep Learning for Human Sensing from Visual Data

Grégory Rogez CV team – NAVER LABS Europe NAVER

CONTENTS

- 1. The problem, its applications and challenges
- 2. State-of-the-art
- 3. Our approaches for human sensing
 - 3.1 3D human pose estimation
 - 3.2 3D human shape prediction
- 4. Ongoing research and applications
- 5. Take-home message

1. The problem, its applications and challenges

Human sensing from images and videos

1 person: 1 girlInteraction: Waving & smilingActivity: Greeting

8 persons: 8 boysInteraction: Kicking footballActivity: Playing football

8 persons: 4 male, 4 femaleInteraction: Holding glassesActivity: Toasting

3D human pose estimation

The goal is to localize human body keypoints (joints) in 3D space.

Figure: courtesy of Gyeongsik Moon et al, ICCV 2019

Why is it interesting?

- A large proportion of visual content on the web contains humans
- Many possible applications including:

-HCI, gaming, AR / VR -Dancing / sport analysis

Why is it interesting?

- A large proportion of visual content on the web contains humans - Many possible applications including:

- Human Robot interactions
- Learning from demonstration
- Surveillance, safety

© 2019 NAVER LABS. All rights reserved.

Why is it difficult?

variation in illumination

variation in appearance

body part foreshortening

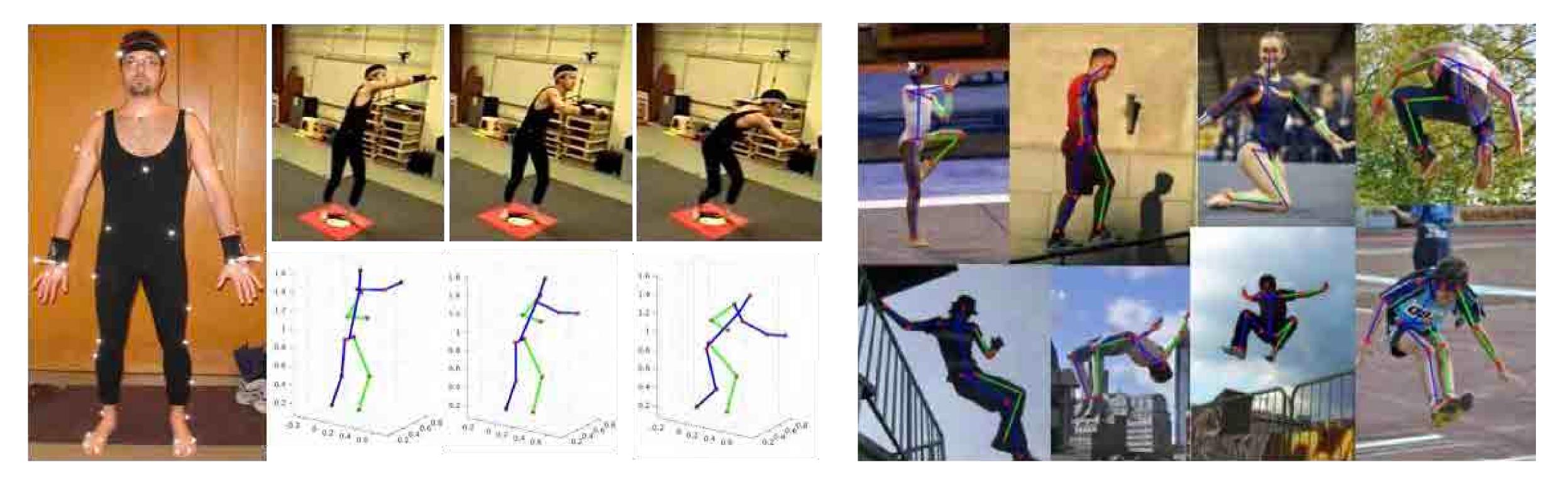
variation in pose, viewpoint

occlusion & clutter

motion blur

Why is it difficult?

Lack of data, i.e. images with 3D annotations



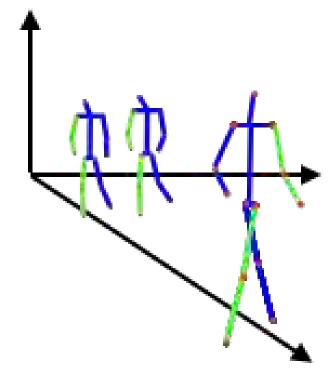
Accurate 3D data in constrained environments (Motion Capture Room)

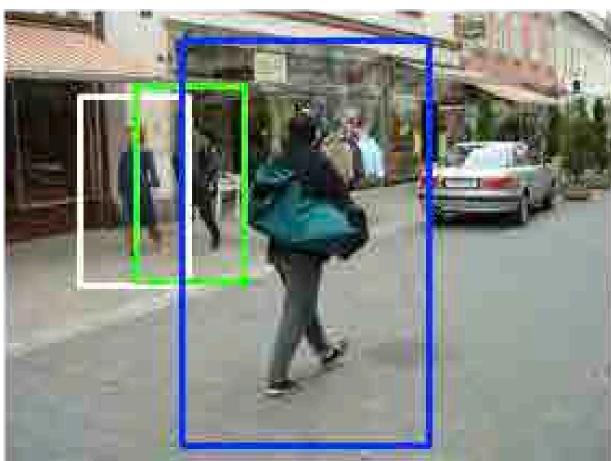
DEVIEW 2019

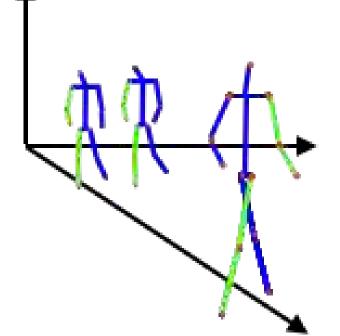
In real-world images, only manually labelled 2D data

2. The state-of-the-art

Several possible paths from an input image to 3D pose...



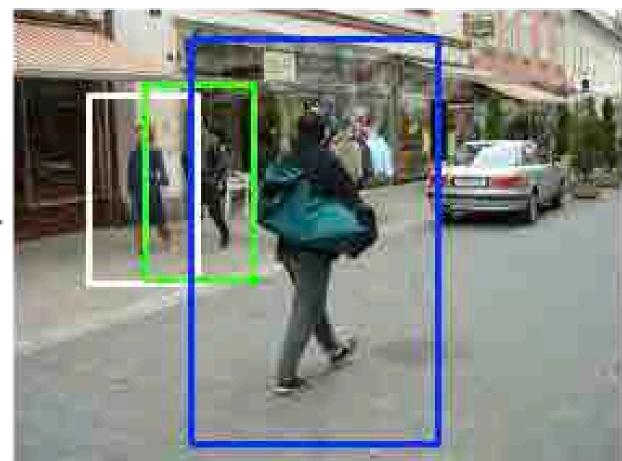


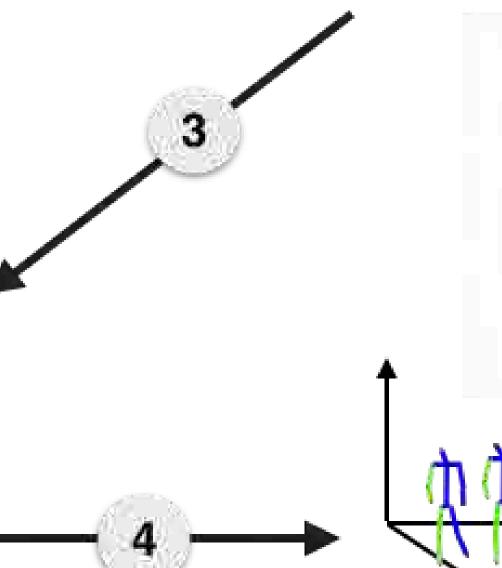


Detection

1 [Dalal & Triggs, CVPR'05]

[Li et al, ICCV'15, Tekin 2 et al, Zhou et al, CVPR'16]





2D pose

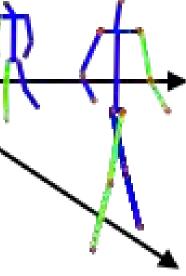
Detection

1 [Dalal & Triggs, CVPR'05]

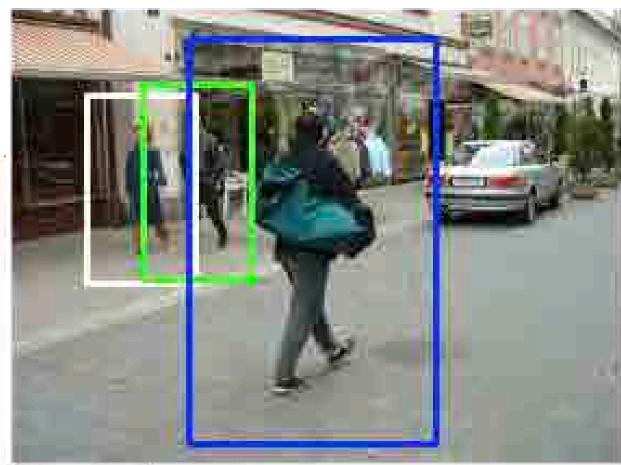
[Li et al, ICCV'15, Tekin et al, Zhou et al, CVPR'16]

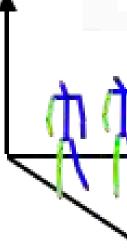
[ECCV'16: Newell et al., Insafutdinov et al., Gkioxary et al., Lifshitz et al., Bulat &Tzimiropoulos CVPR'16: Wei et al, Yang et al, Pishchulin et al, Hu& Ramanan, Carreira et al.,]

[Akhter & Black, CVPR'15, Zhou et al., CVPR'15, Bogo et al., ECCV'16, Martinez et al., CVPR'17]



Detection





2D pose

3D pose

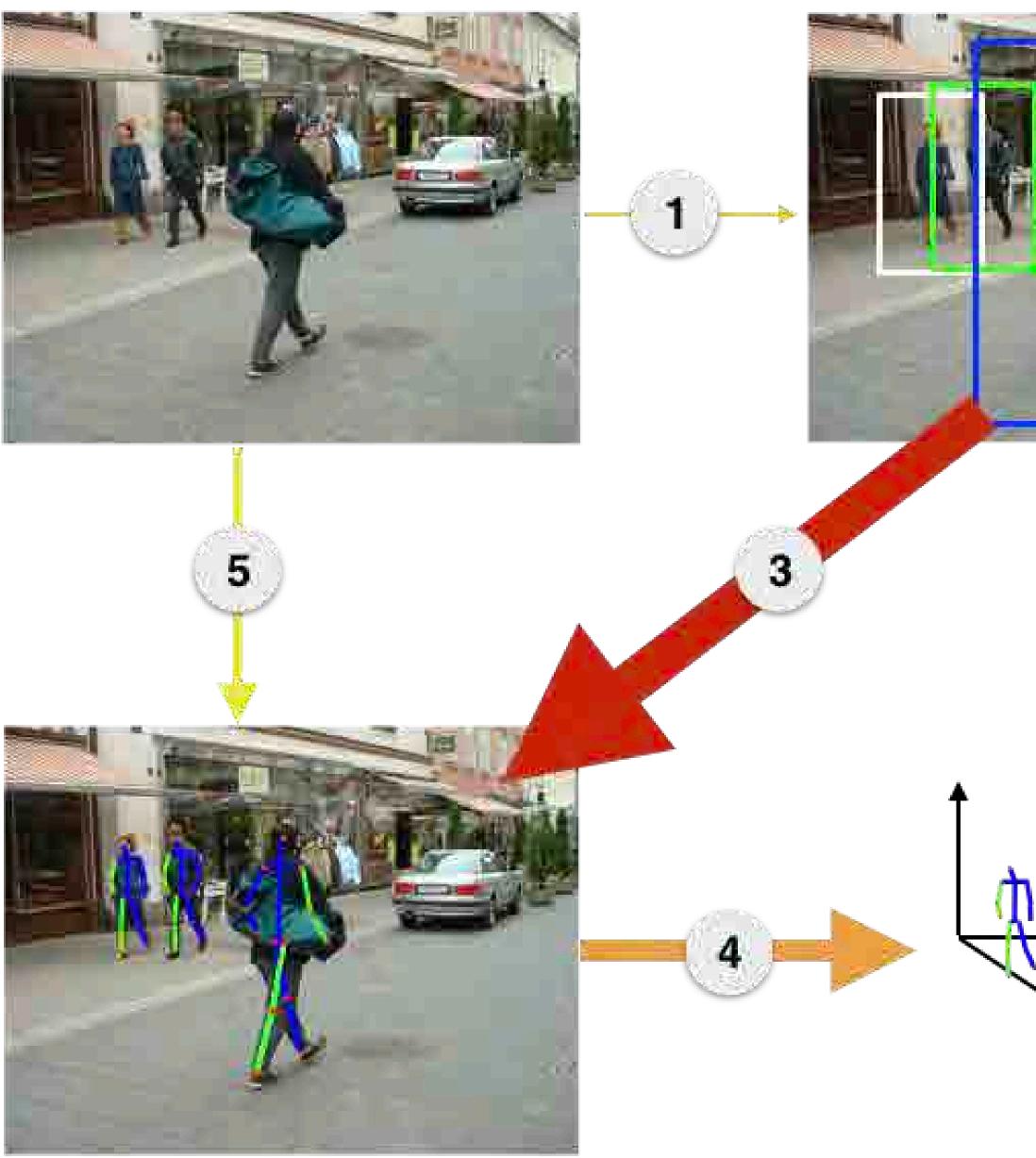
1 [Dalal & Triggs, CVPR'05]

[Li et al, ICCV'15, Tekin et al, Zhou et al, CVPR'16]

[ECCV'16: Newell et al., Insafutdinov et al., Gkioxary et al., Lifshitz et al., Bulat &Tzimiropoulos CVPR'16: Wei et al, Yang et al, Pishchulin et al, Hu& Ramanan, Carreira et al.,]

[Akhter & Black, CVPR'15, Zhou et al., CVPR'15, Bogo et al., ECCV'16, Martinez et al., CVPR'17]

[Pishchulin et al, CVPR'16, Cao et al., CVPR'17]



2D pose

3D pose

Detection

3

[ECCV'16: Newell et al., Insafutdinov et al., Gkioxary et al., Lifshitz et al., Bulat &Tzimiropoulos CVPR'16: Wei et al, Yang et al, Pishchulin et al, Hu& Ramanan, Carreira et al.,]

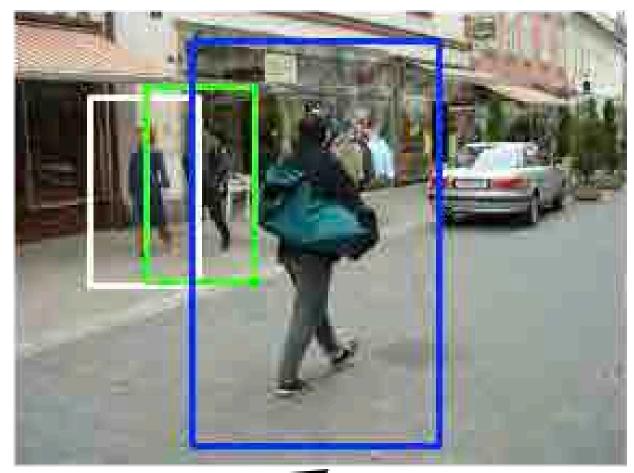
1 [Dalal & Triggs, CVPR'05]

[Li et al, ICCV'15, Tekin

et al, Zhou et al, CVPR'16]

[Akhter & Black, CVPR'15, Zhou et al., CVPR'15, Bogo et al., ECCV'16, Martinez et al., CVPR'17]

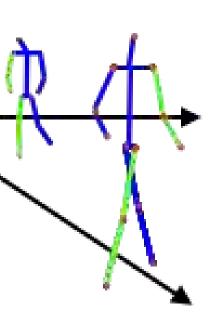
[Pishchulin et al, CVPR'16, Cao et al., CVPR'17]



CLASSIFICATION

2D pose

Detection



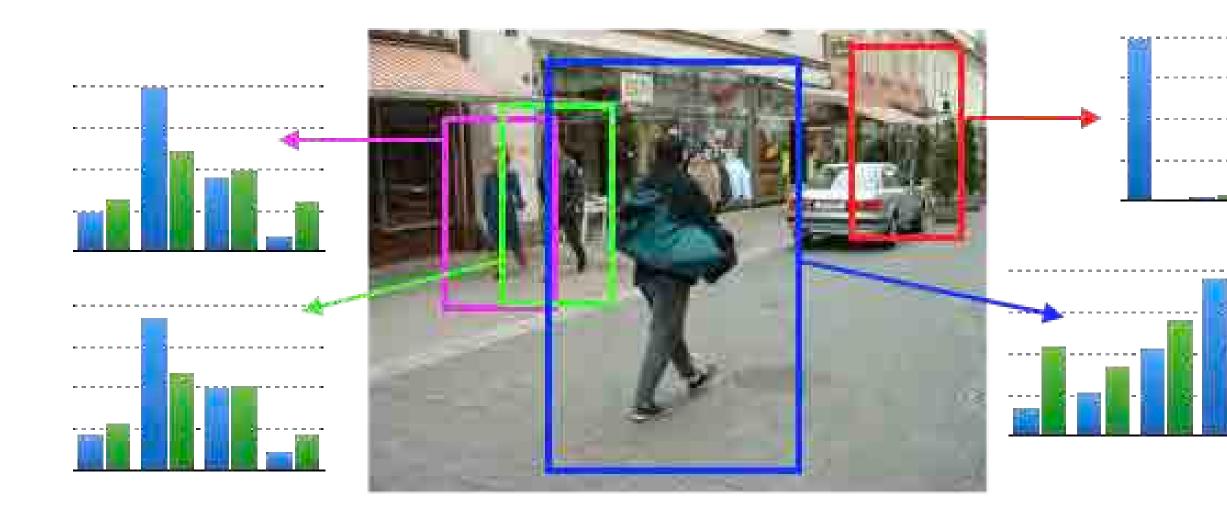
3. Our approaches

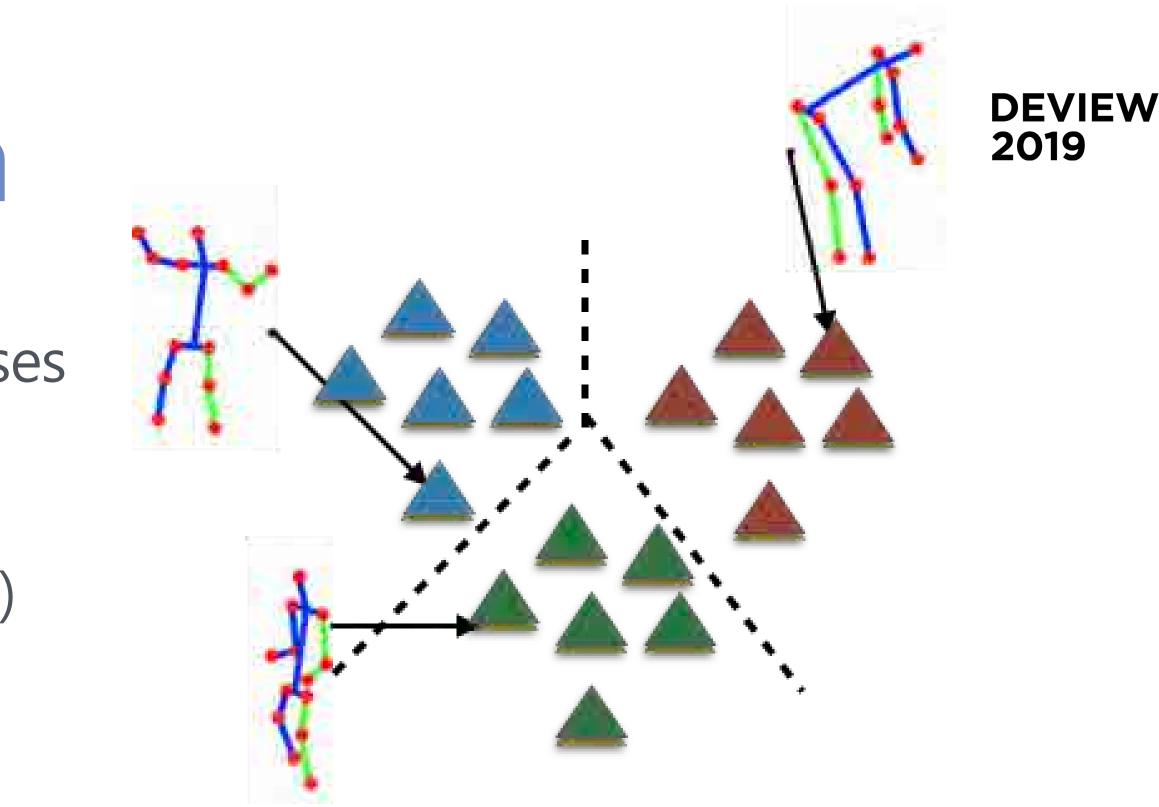
Human pose detection

• Partition the space of body poses into K classes

• Train a K-way classifier (K pose classes + bgd)

Joint localization and pose estimation

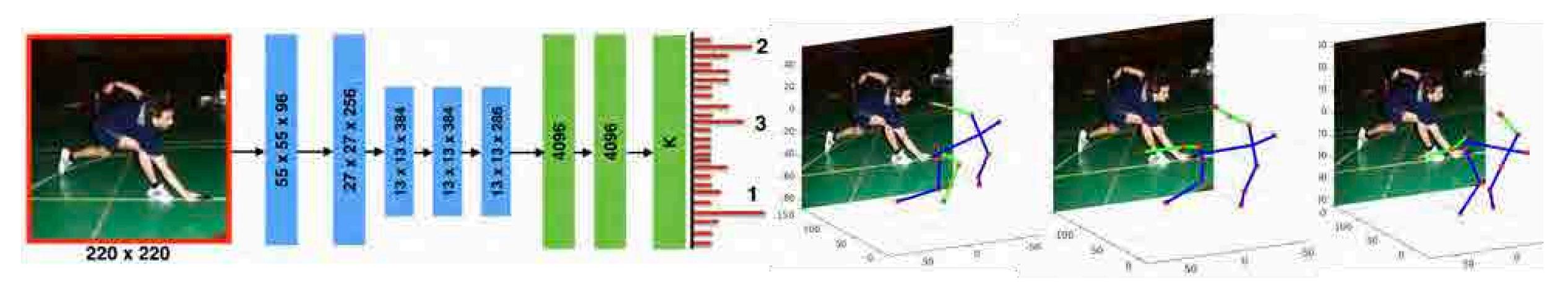




Return pose (eg, center of top class)

CNN for human pose classication

- 3D pose space partitioned into K clusters (K=5000)
- AlexNet adapted to output a probability distribution over pose classes.



[G. Rogez and C. Schmid, MoCap-guided Data Augmentation for 3D Pose Estimation in the Wild. NIPS 2016]

Average 2D/3D poses of top scoring class returned for evaluation.

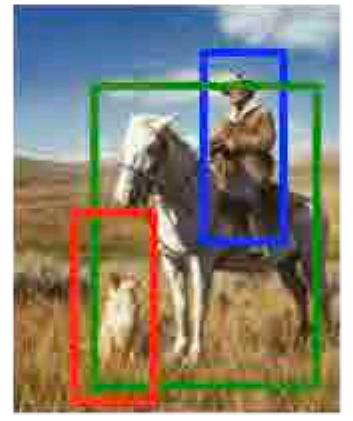
CNN for human pose detection

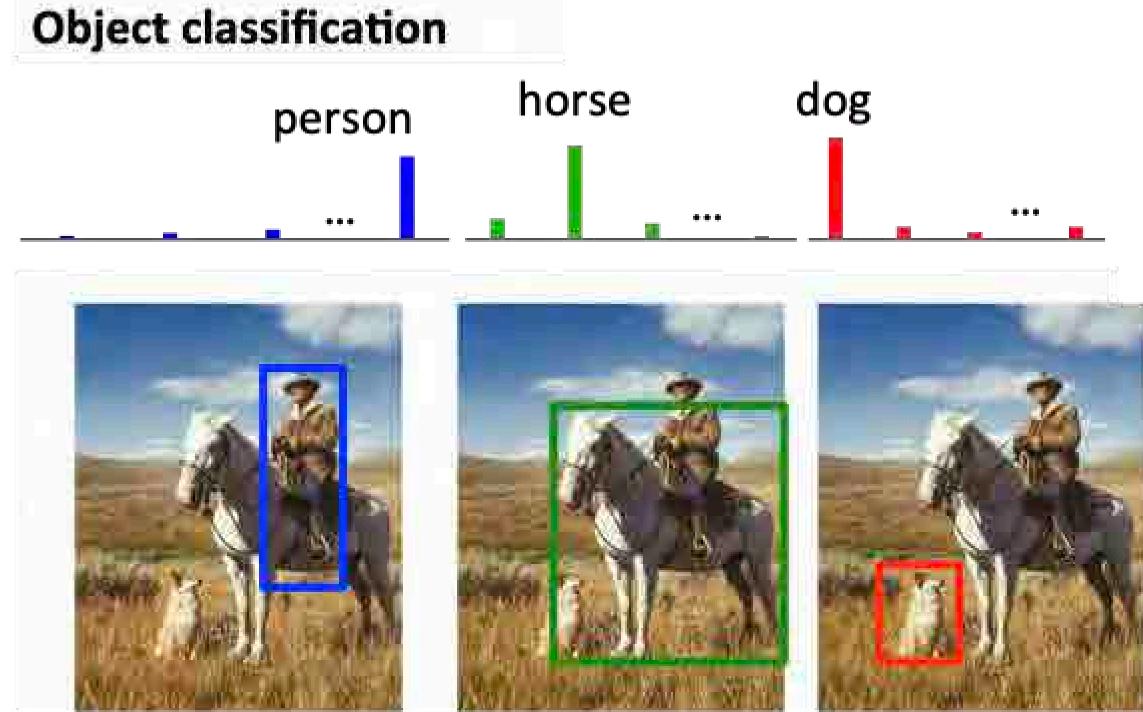
Problem: Requires a well-centered bounding box — A large number of cluster is required (K=5000)

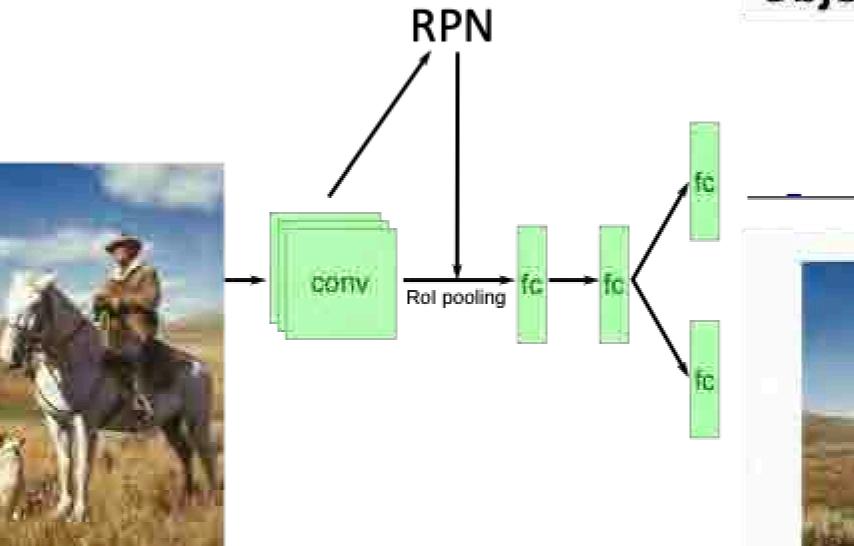
Solution: Integrate Localisation, Classification and Regression into an end-to-end deep network, LCR-Net.

[G. Rogez, P. Weinzaepfel and C. Schmid, LCR-Net: Localization-Classification-Regression for Human Pose. CVPR 2017]

Localization





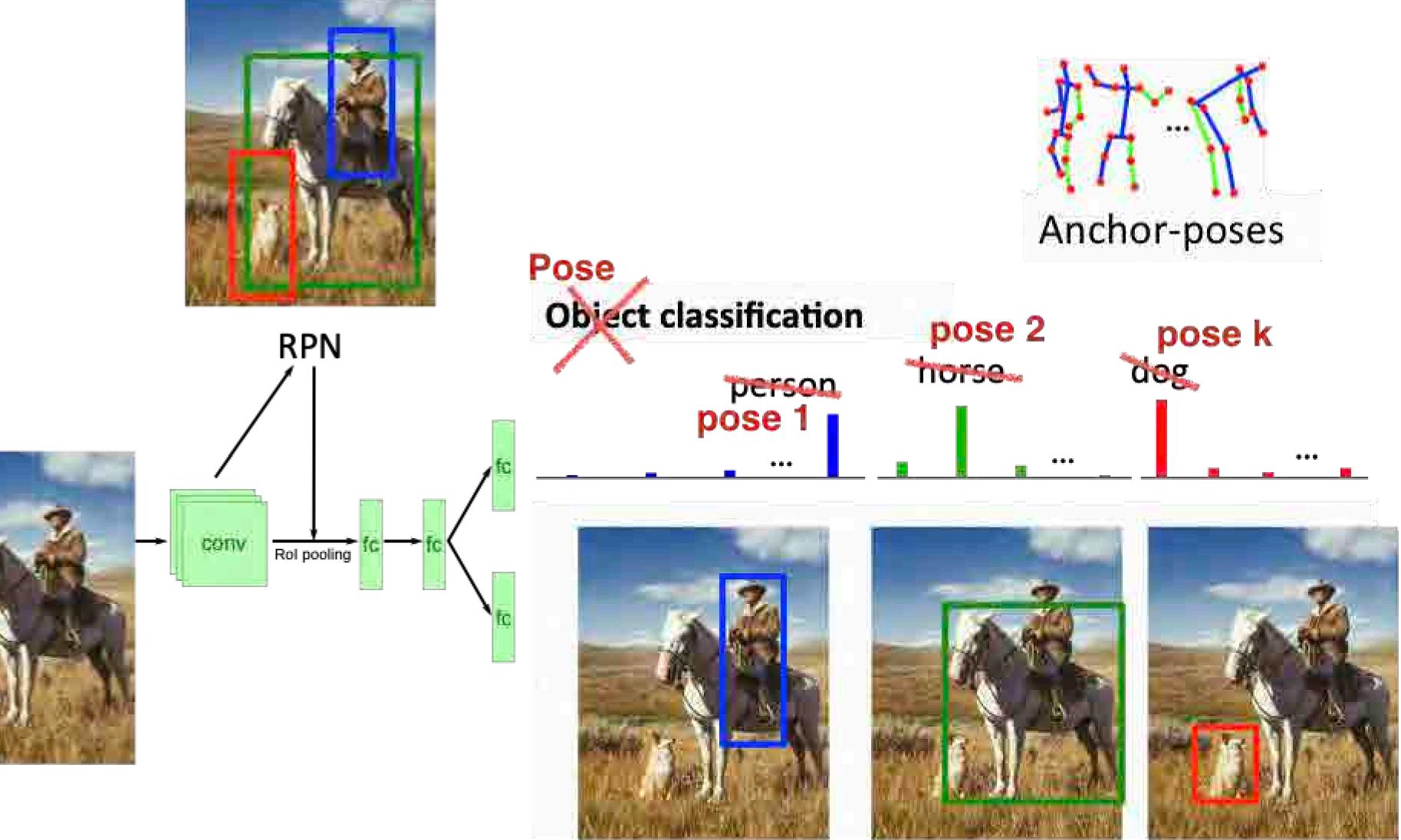


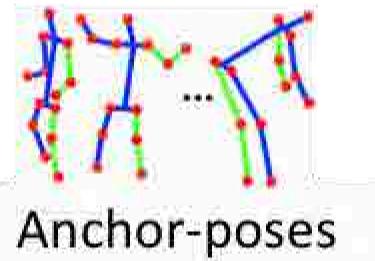
Bounding box regression

DEVIEW 2019

[Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015]

Localization





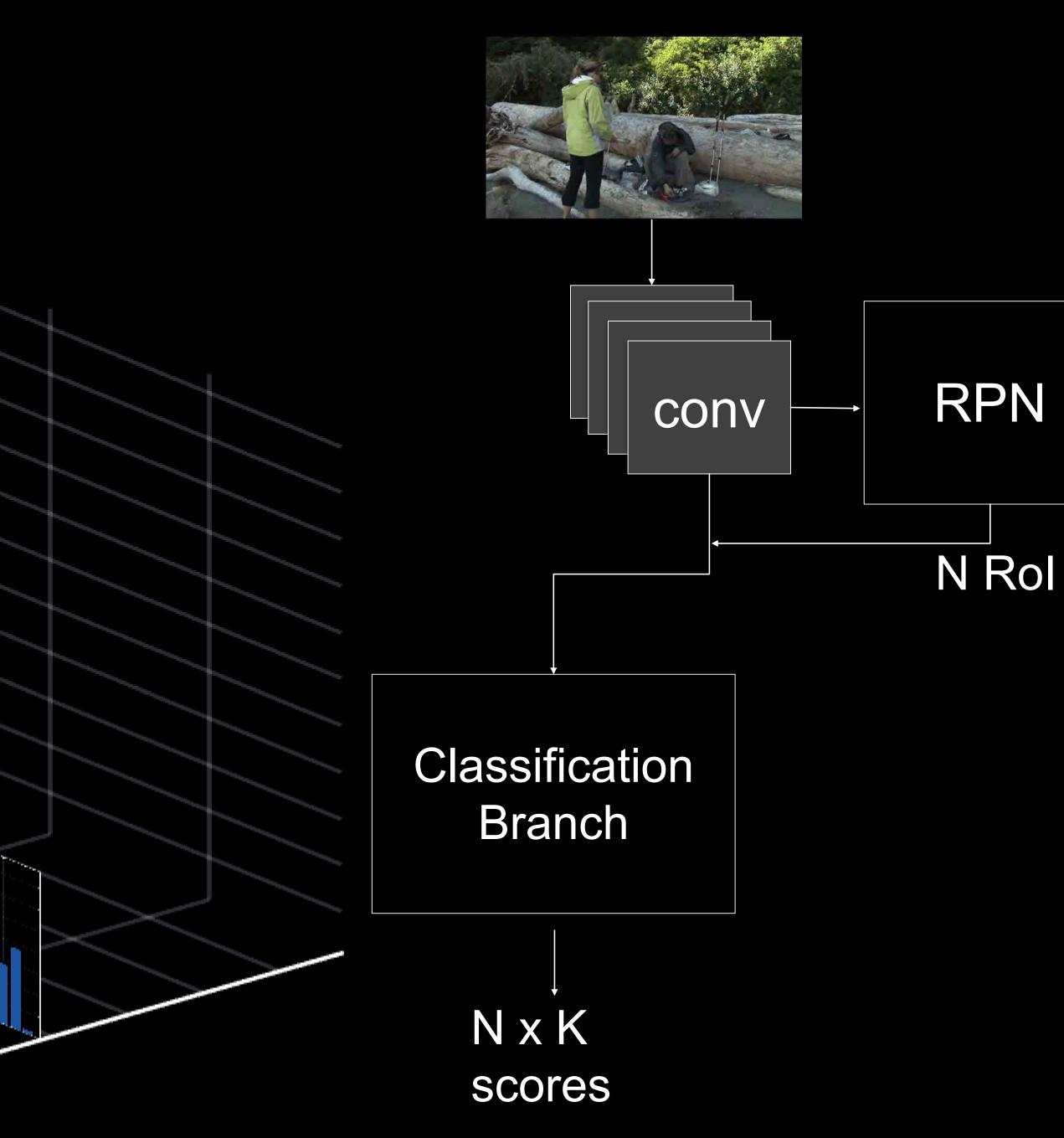
[Rogez, Weinzaepfel and Schmid, LCR-Net: Localization-Classification-Regression for Human Pose. CVPR 2017]

LCR-Net: End-to-End Architecture

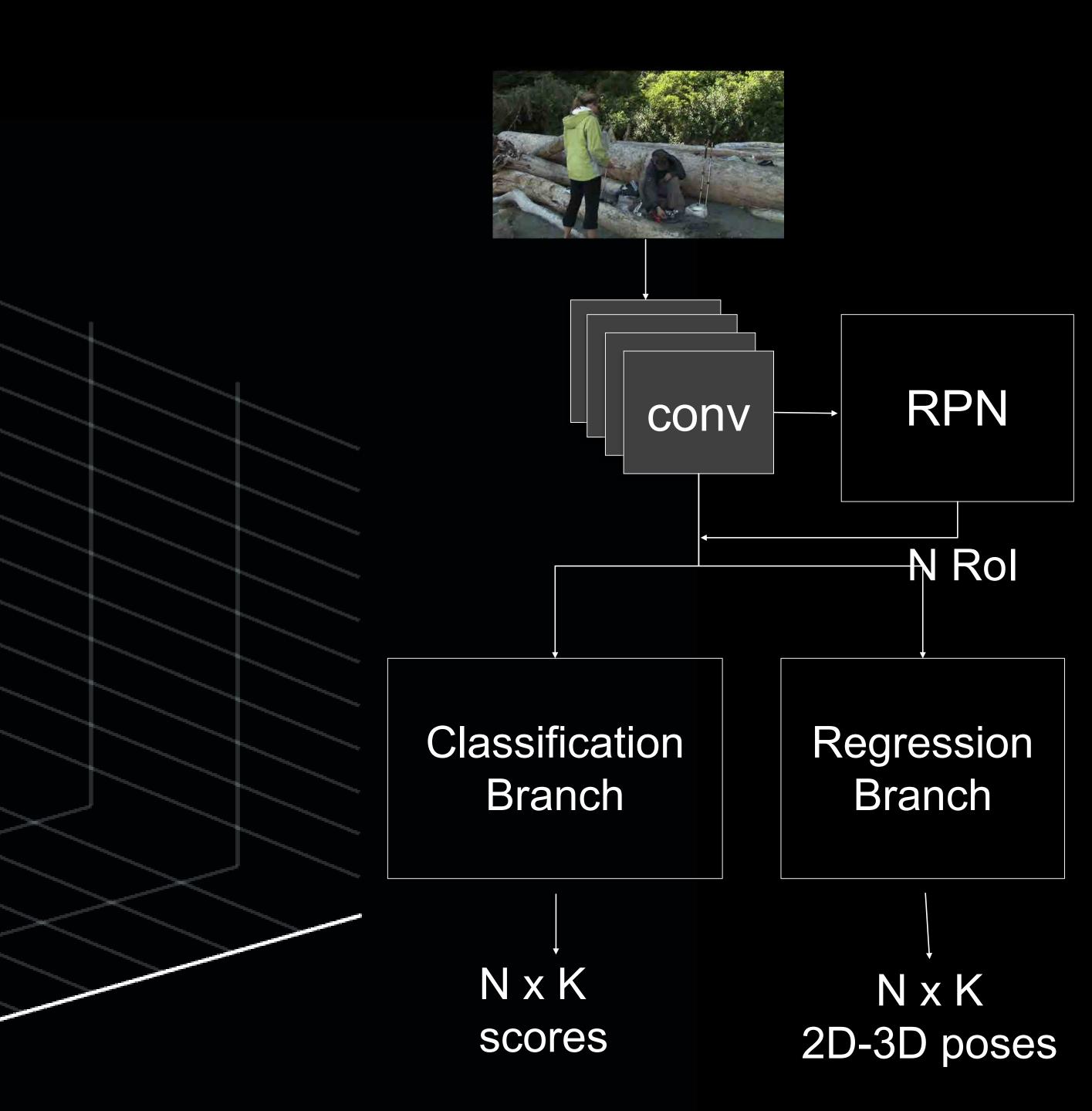
LCR-Net: Localization

LCR-Net: Classification

1 m m



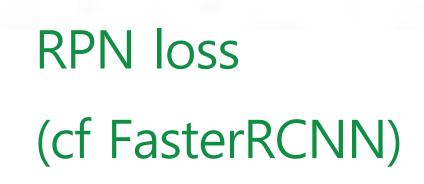
LCR-Net: Regression



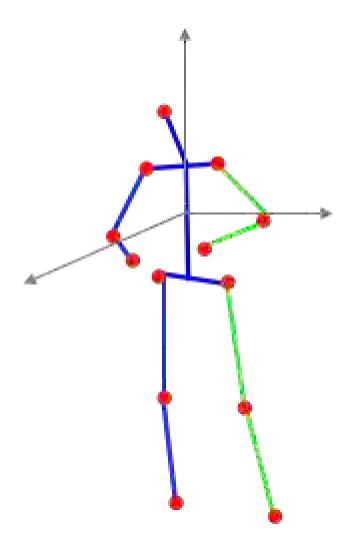
LCR-Net training

Bounding box + class label

LCR-Net Loss: \mathcal{L}



DEVIEW 2019



normalized 3D poses

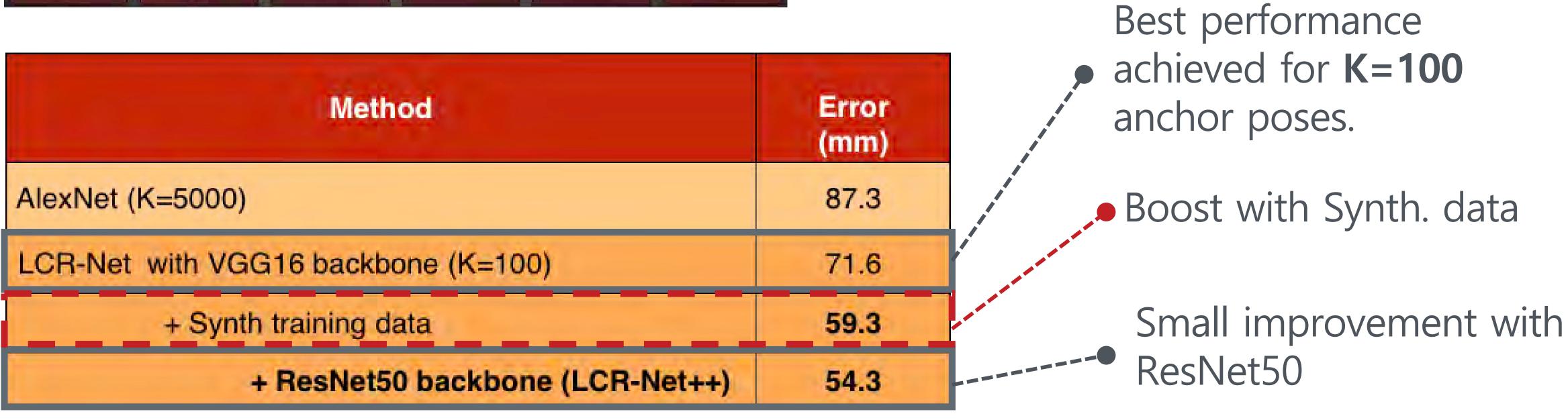
(aligned+orientated)

normalized 2D poses (w.r.t bounding box)

log loss of the true class

L1-smooth loss

Evaluation on Human 3.6M



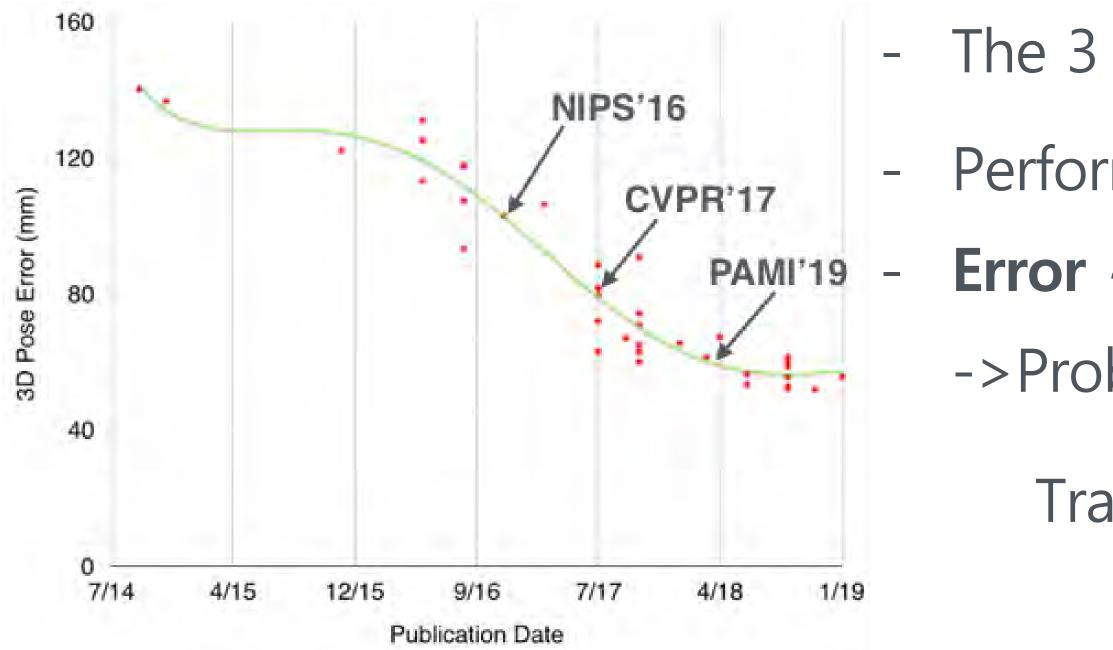
[Rogez, Weinzaepfel & Schmid, LCR-Net++, IEEE T. PAMI 2019]

300k training images with 2D and 3D poses 5 subjects for training

2 subjects for test

Qualitative results on Human 3.6M

Comparaison with state of the art



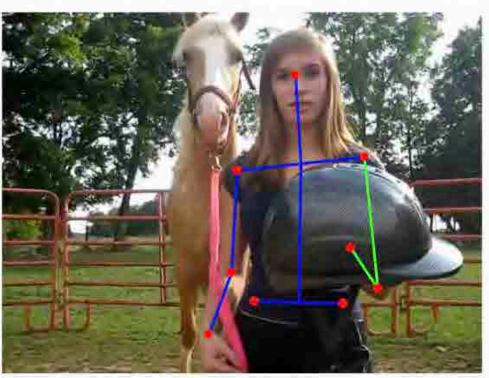
300k training images with 2D and 3D poses 5 subjects for training

2 subjects for test

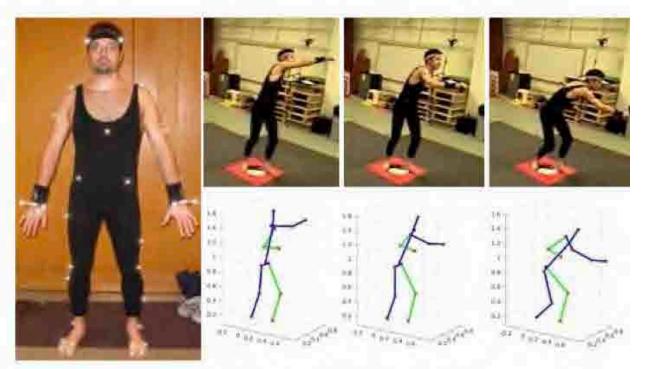
- The 3 presented papers on par with state of the art - Performance on H3.6M is saturating **Error** ~precision of sensor used to capture groundtruth ->Problem solved or data not hard enough?

Training and testset distribution overlap

In the wild training data



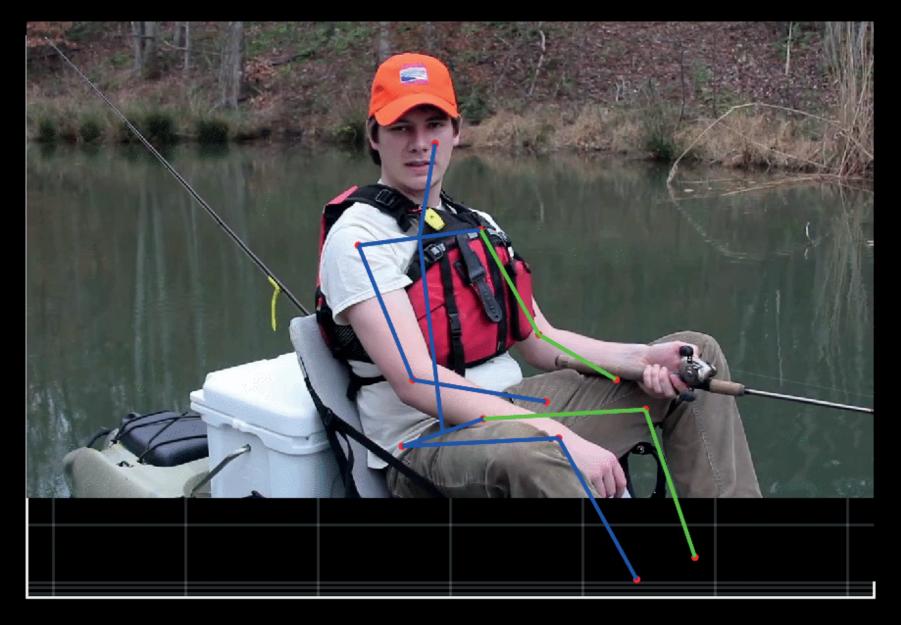
2D pose annotations



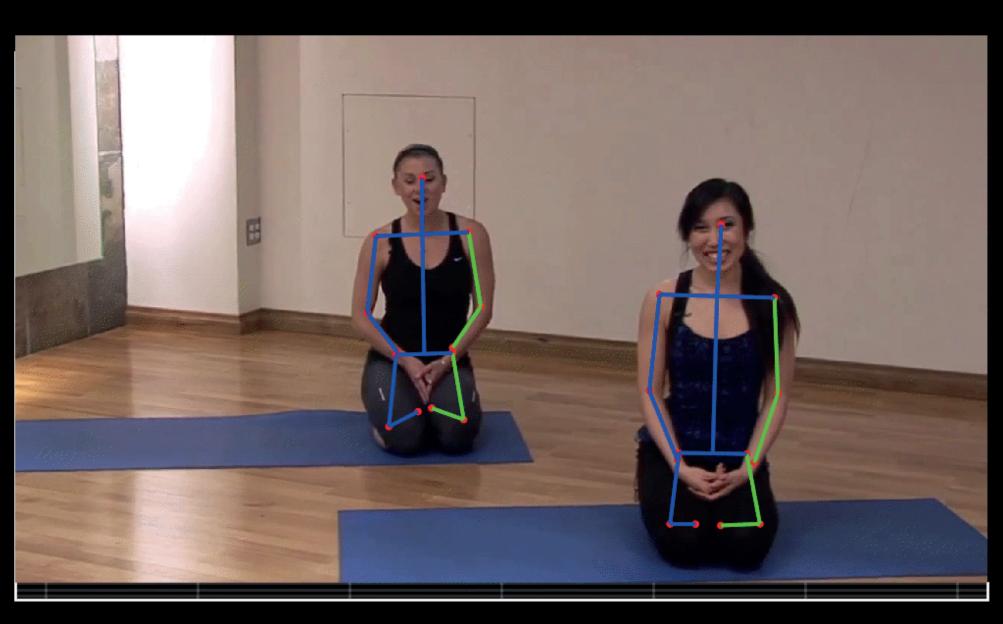
MoCap 3D data

Results in the wild

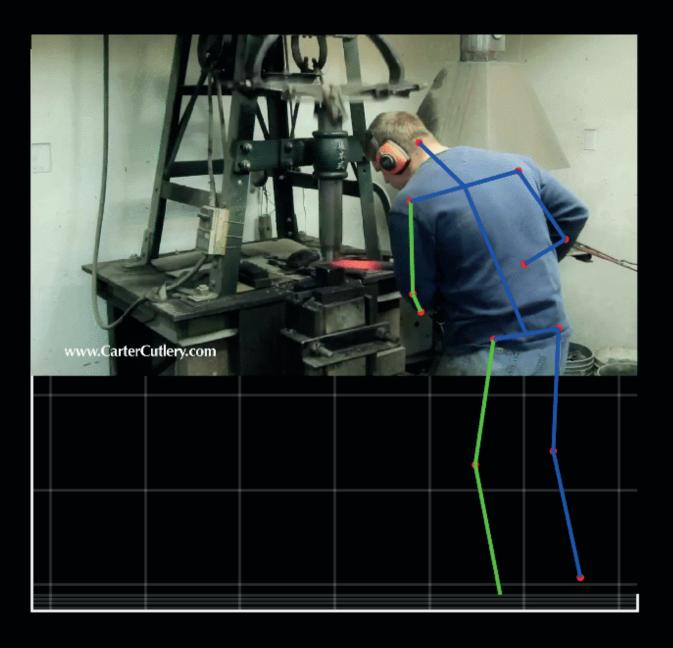
We are the first to evaluate in 4 regimes with competitive results in all 4:



LCR-Net can handle varied poses ...



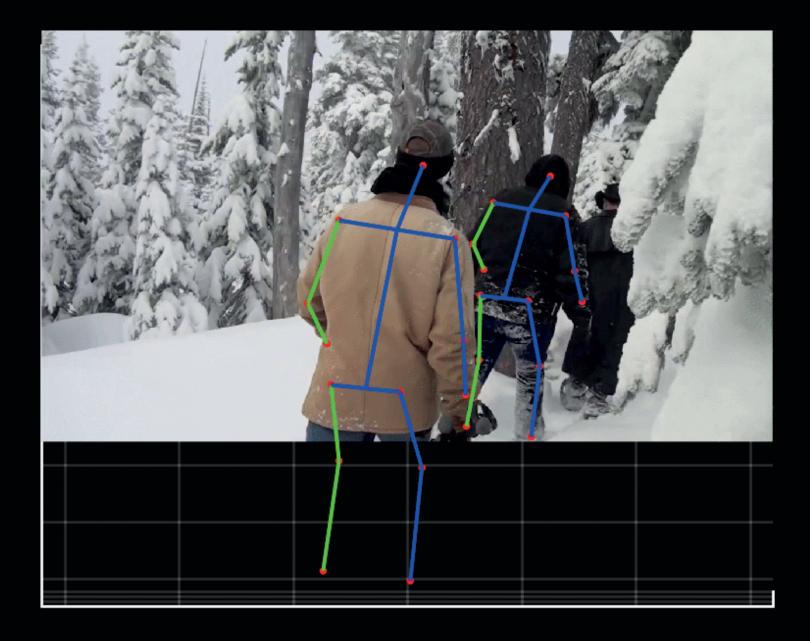
Self-occlusions

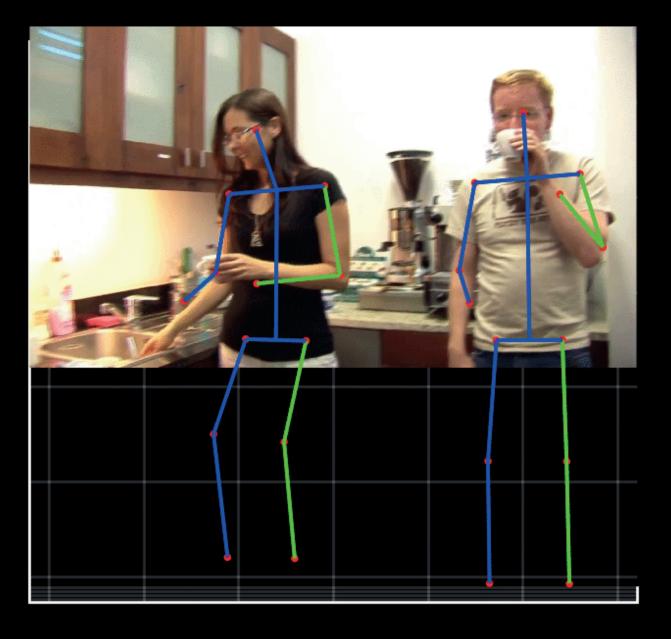


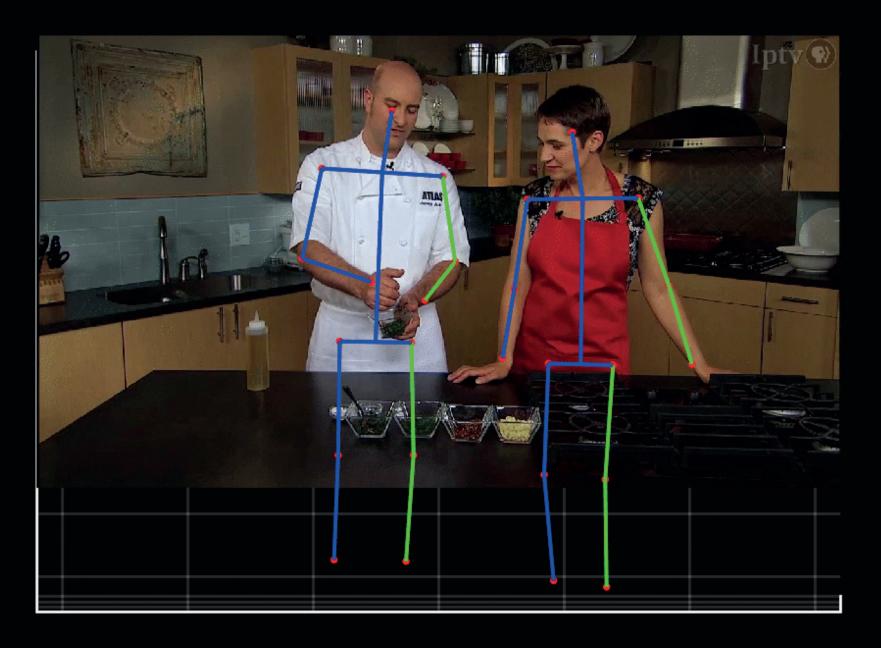
Occlusions



Truncations



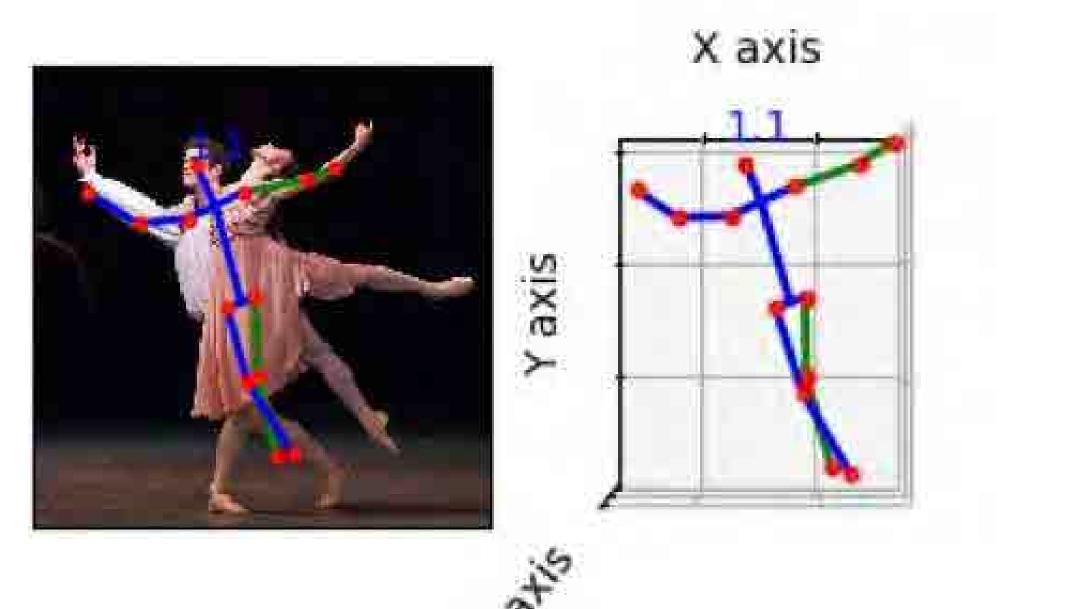




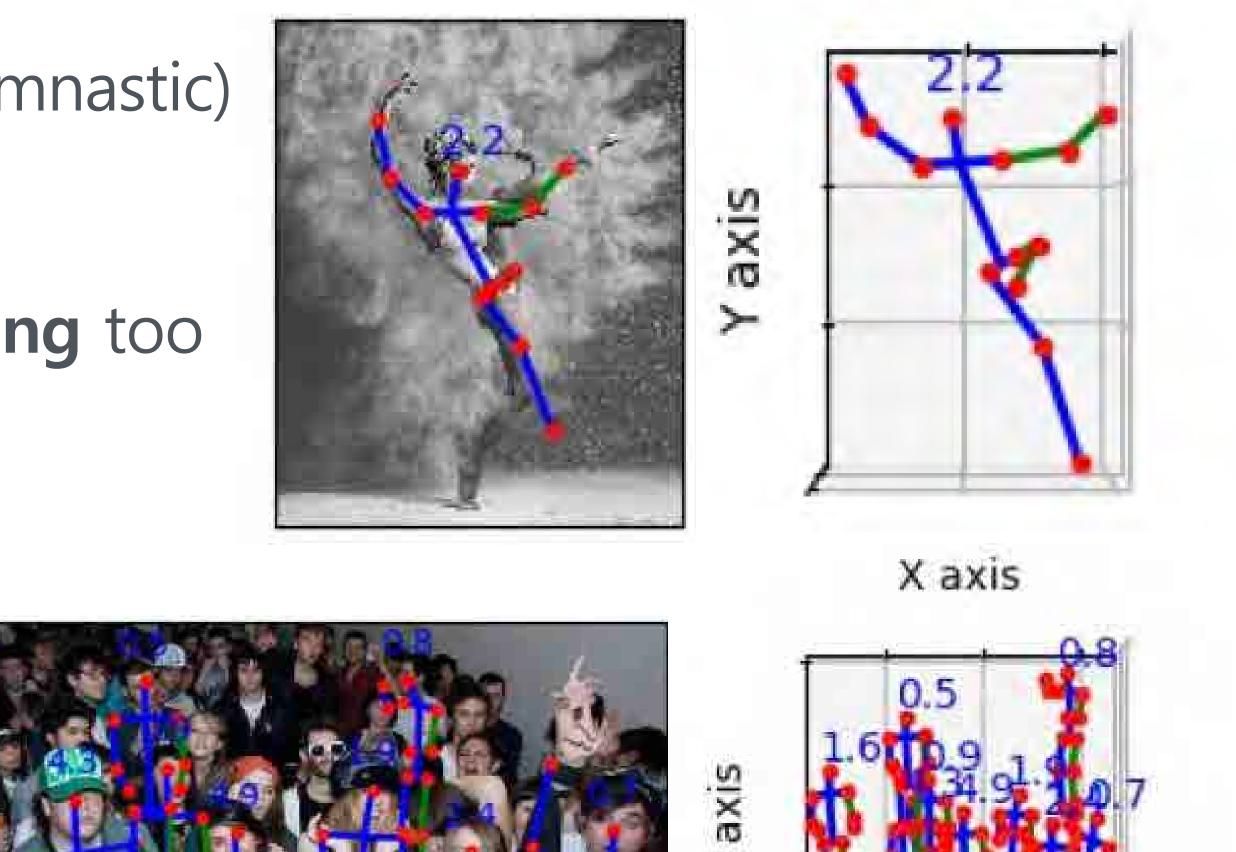
Failure cases

- Complex and/or unseen poses (danse, gymnastic)

- Misdetections when people are **overlapping** too much



DEVIEW 2019



atis

3D surface prediction

What if we need more than just 3D keypoints?

- For virtual try-on for e-commerce

A detailed 3D shape from a single image would be better.

• To create his own 3D full-body avatar (Gaming or AR/VR) applications

Most state-of-the-art methods rely on parametric models such as **SMPL**...

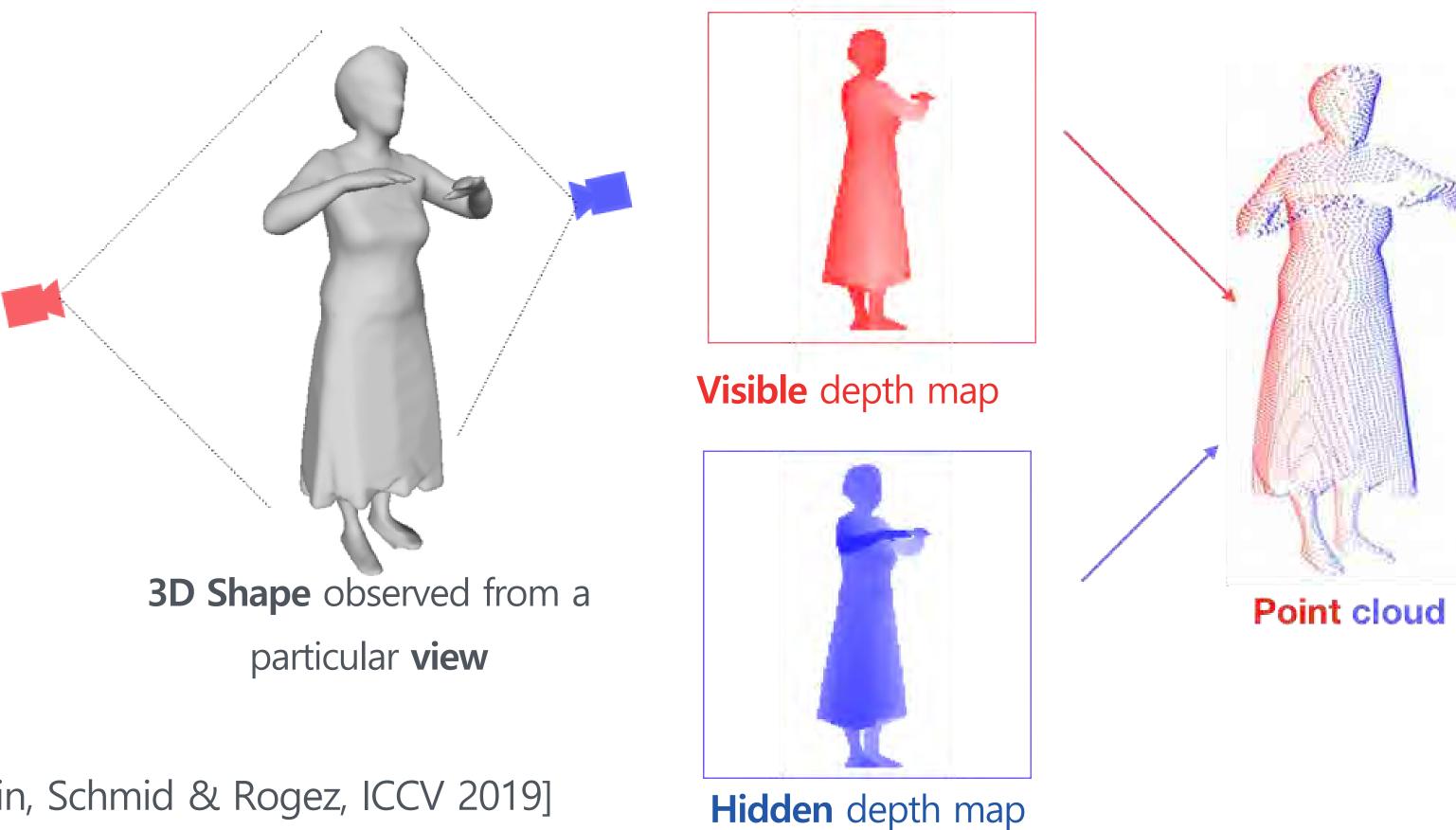
SMPL 3D shape

[SMPL: A Skinned Multi-Person Linear Model, Loper et al, ACM Trans. Graphics 2015]

Detailed 3D shape

but these are limited to naked body shapes and cannot represent hair and clothes.

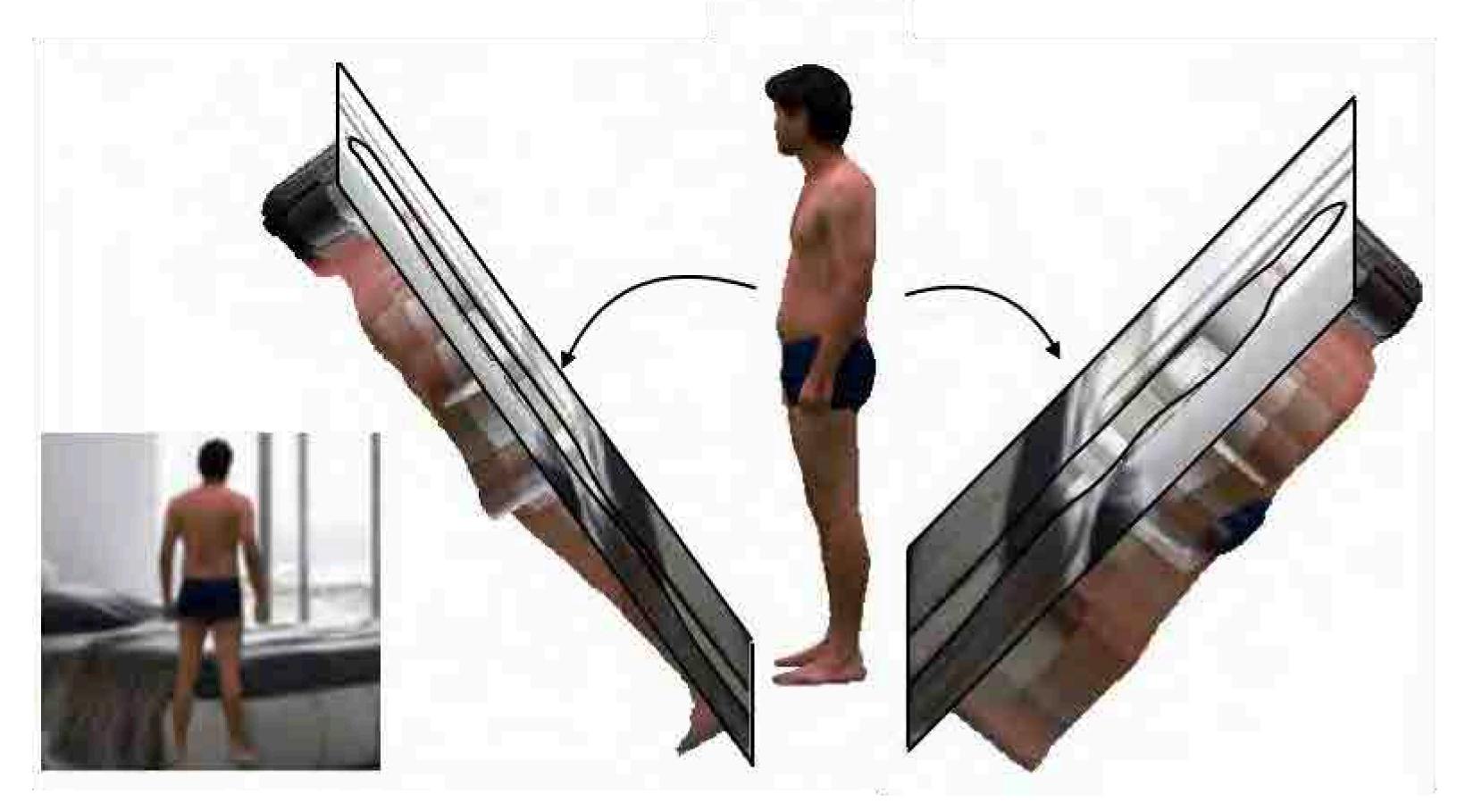
We propose a **non-parametric** approach that represents the 3D surface as the combination of 2 depth maps: the visible and the hidden depth map.



[Gabeur, Franco, Martin, Schmid & Rogez, ICCV 2019]

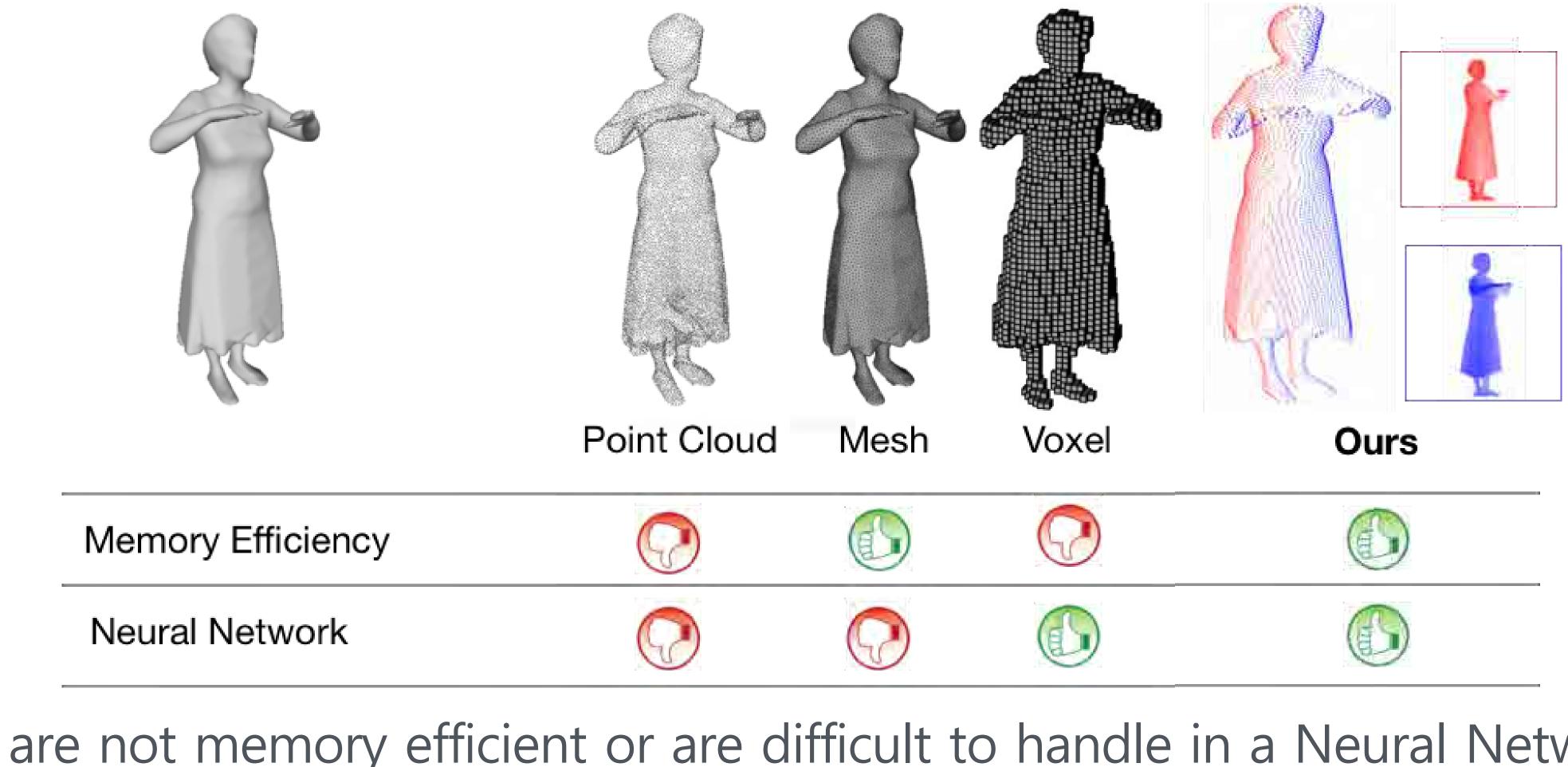
DEVIEW 2019

Our representation can be seen as the two halves of a mould...



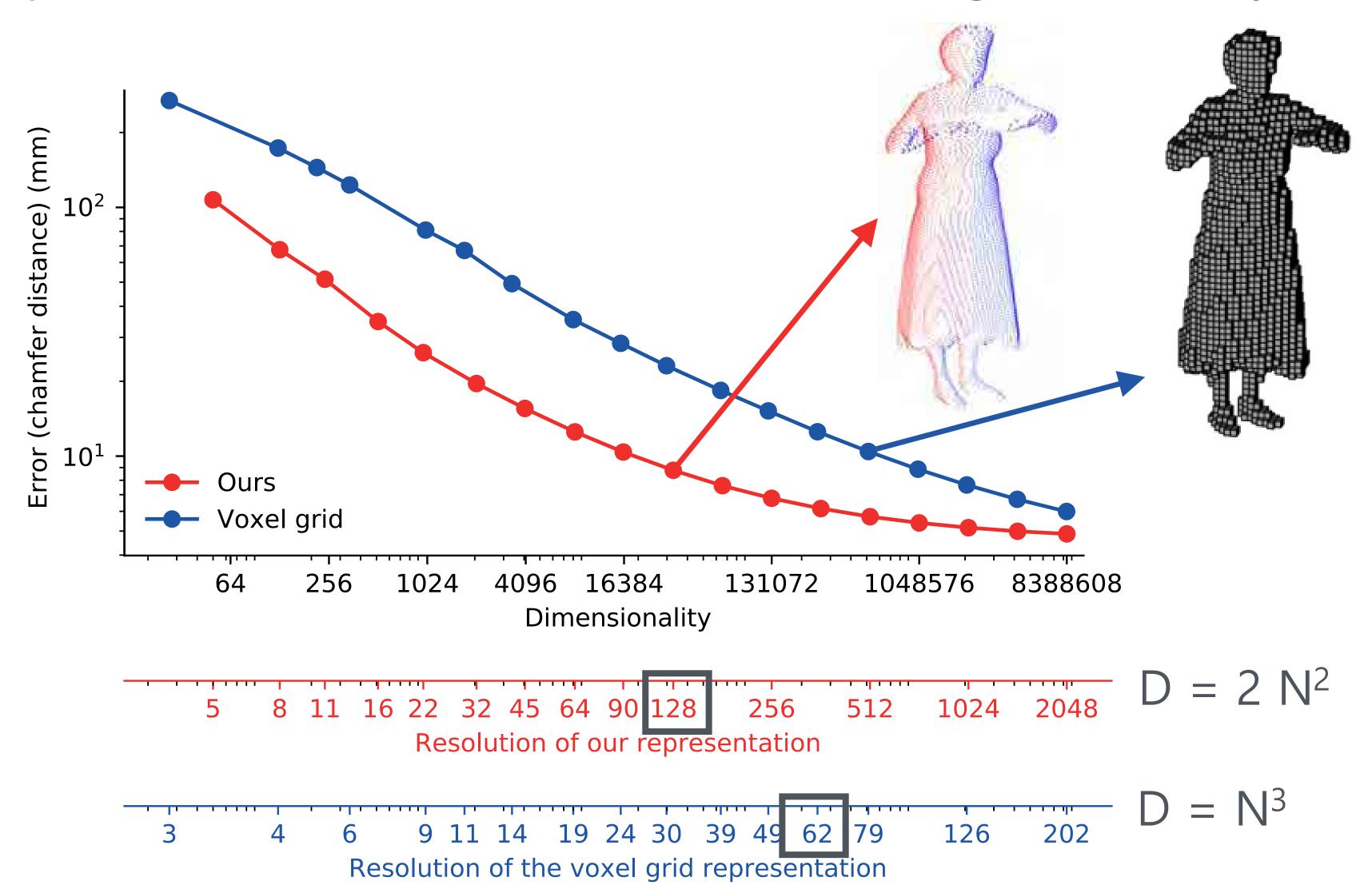
[Gabeur, Franco, Martin, Schmid & Rogez, ICCV 2019]

Other non-parametric representations include point clouds, meshes and voxel grids

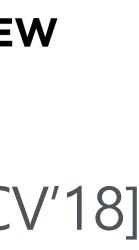


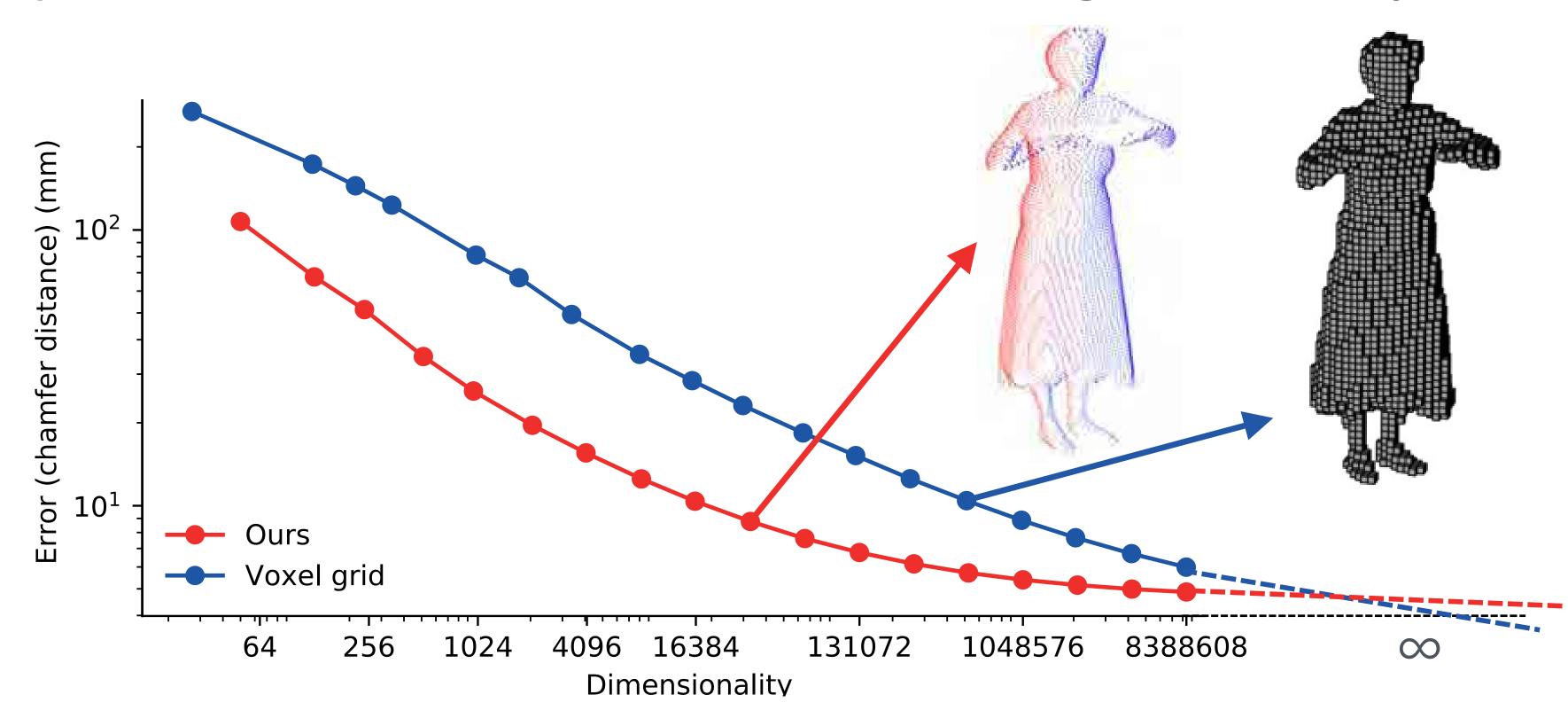
They are not memory efficient or are difficult to handle in a Neural Network. Our representation is both memory **efficient and easy to handle**.

3D representation We compare 3D reconstruction error w



We compare 3D reconstruction error with voxel grids of BodyNet [Varol et al, ECCV'18]

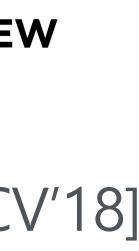




DEVIEW 2019

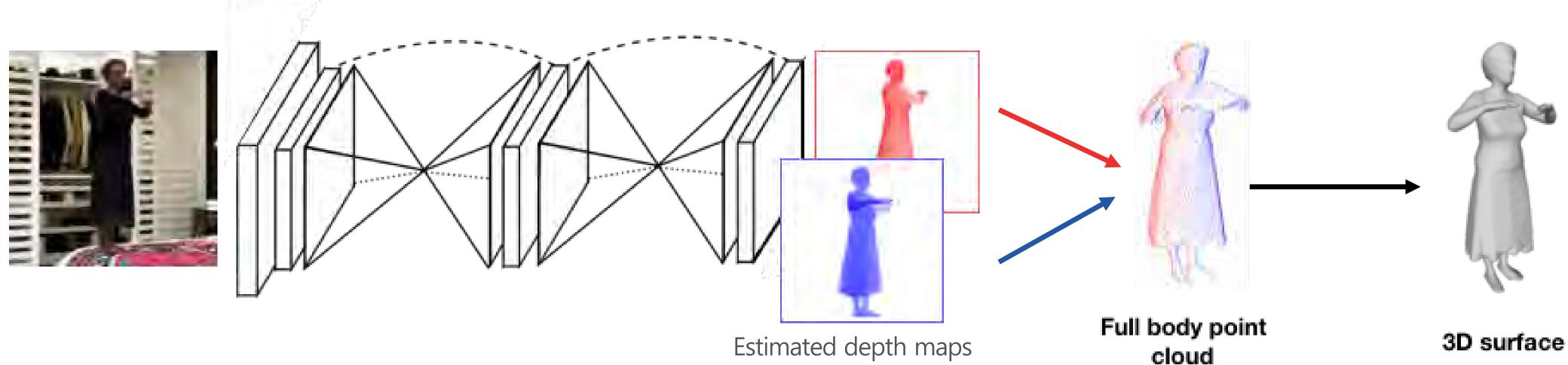
We compare 3D reconstruction error with voxel grids of BodyNet [Varol et al, ECCV'18]

Voxel grids can attain a perfect result with an **infinity of voxels**. For manageable sizes, our **representation** captures **more details**.



Architecture

and hidden depth maps from a 256 x 256 input image:



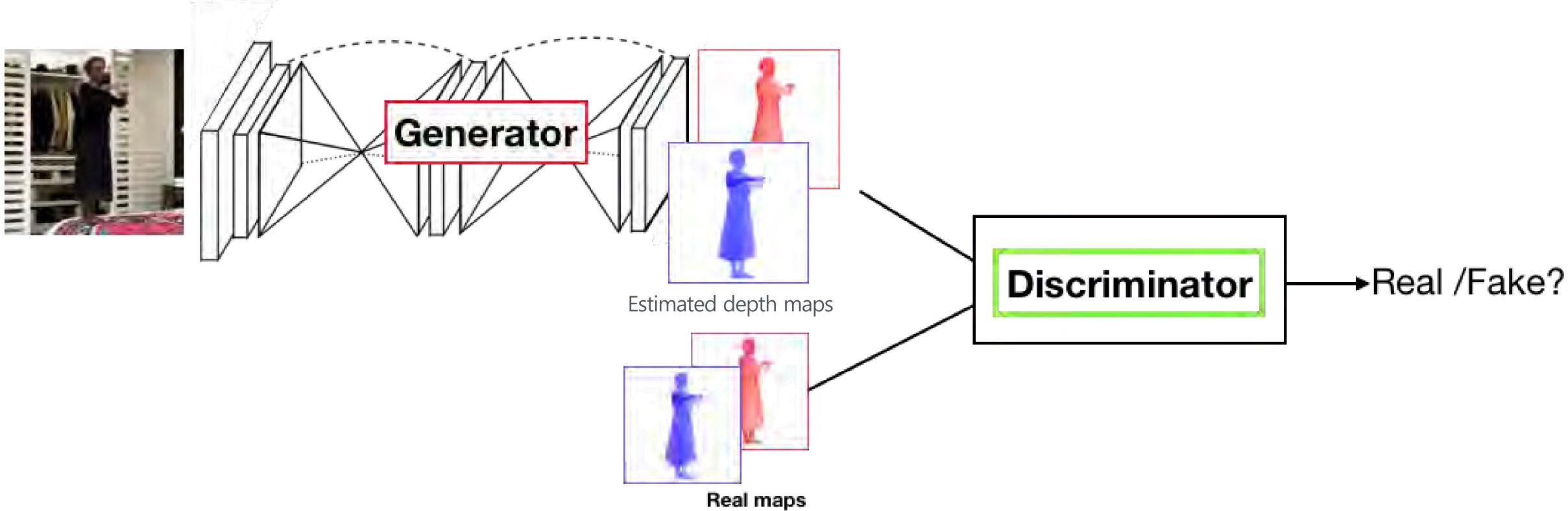
[25] Newell et al., Stacked Hourglass Networks for Human Pose Estimation, ECCV 2016 [19] Kazhdan and Hoppe, Screened Poisson Surface Reconstruction, ACM T. Graph. 2013

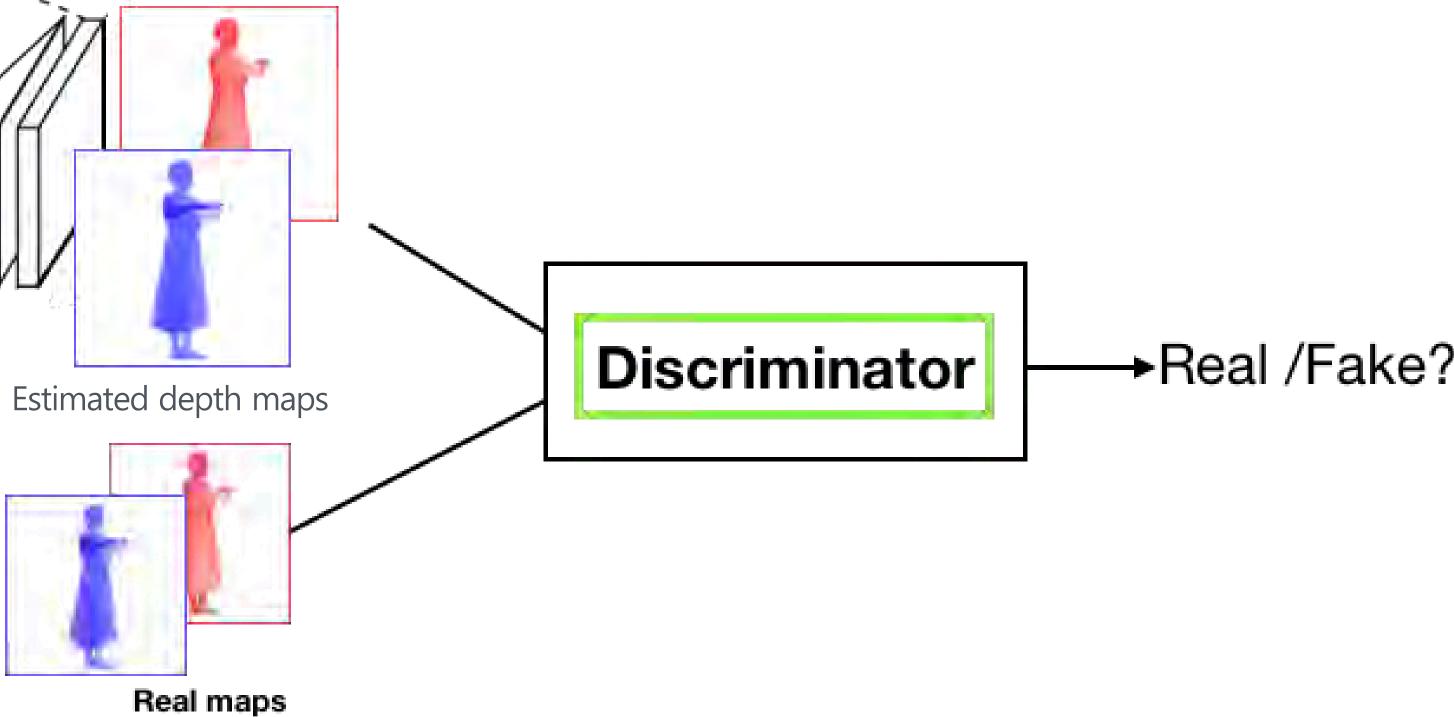
We design a **double stacked hourglass** [25] network to estimate both visible

- The 2 maps are combined to obtain a 3D surface using Poisson reconstruction [19].

Adversarial Training

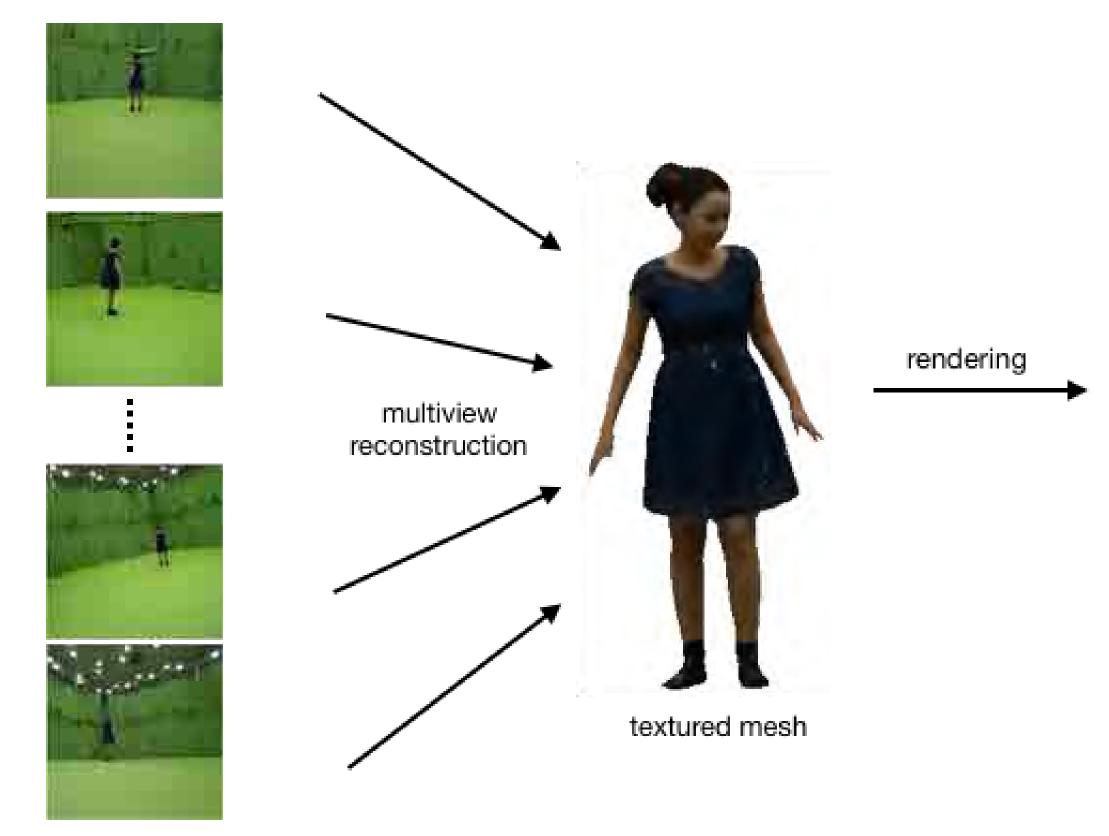
To improve the accuracy and "humanness" of the generated 3D output ... we incorporate a discriminator in an adversarial manner.



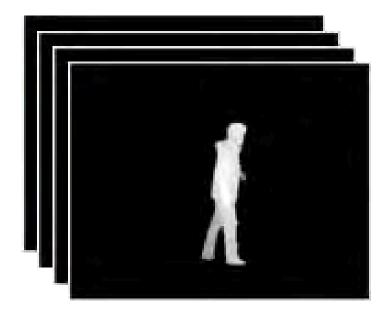


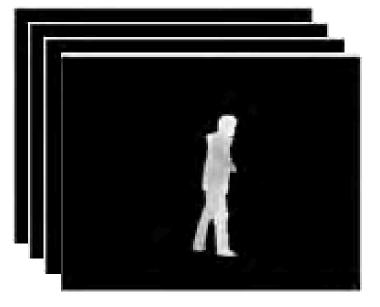
DEVIEW 2019

To train and test our method, we generate a new '3D HUMANS' dataset of images showing real persons in movement with ground truth 3D shapes.

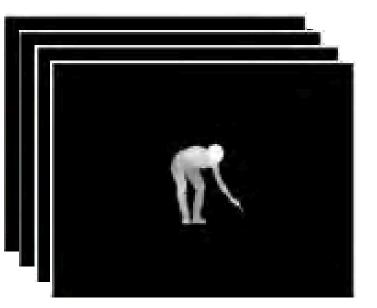


DEVIEW 2019

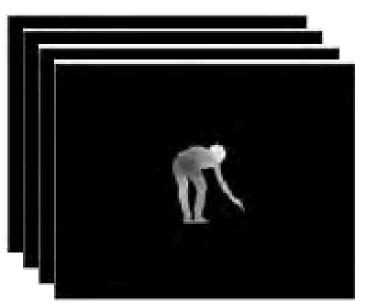




RGB



visible depth maps



hidden depth maps

Results on our test set

For 3 subjects with varied clothing

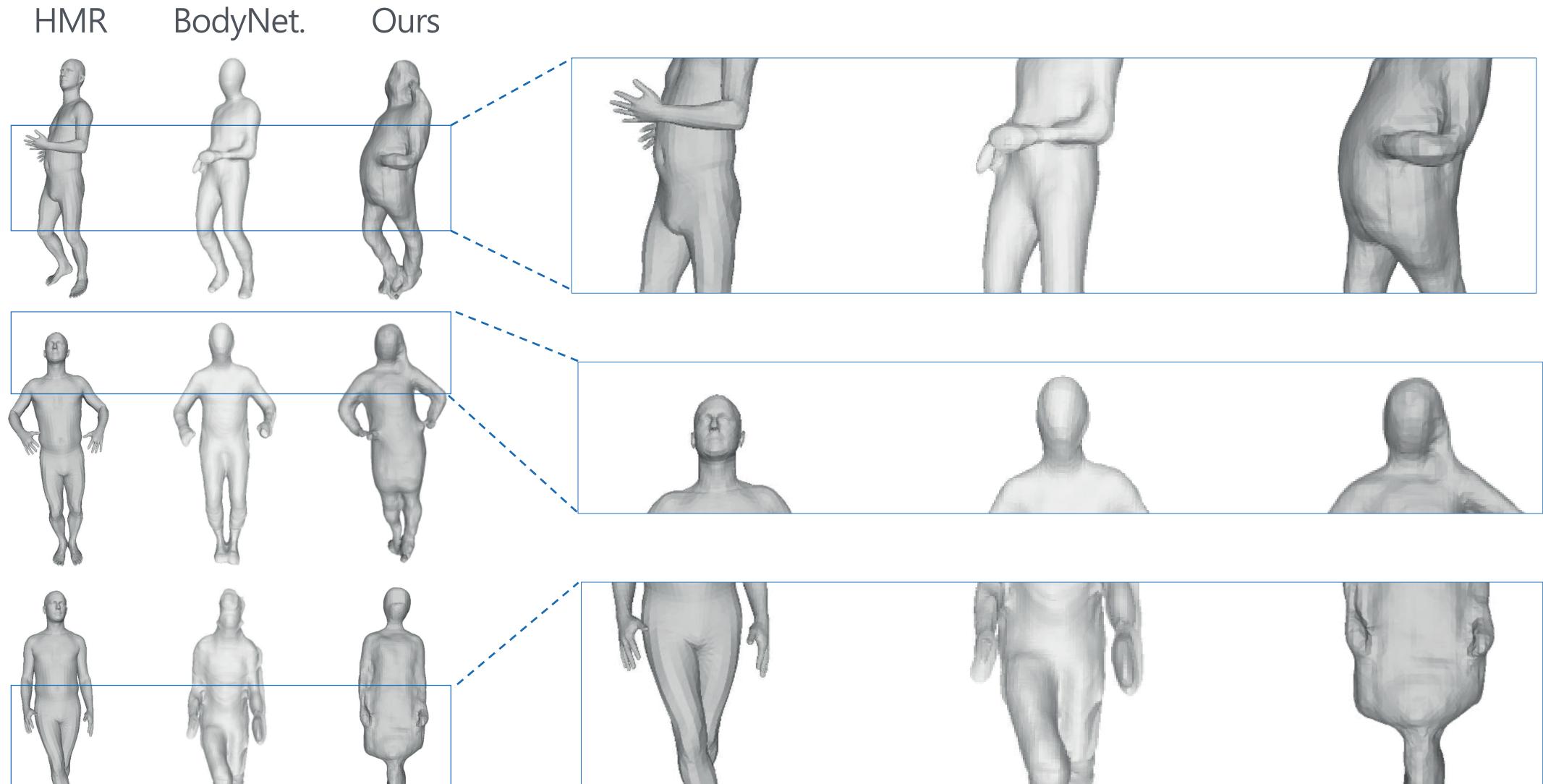
Our 3D representation allows a direct mapping of the image texture to the surface.

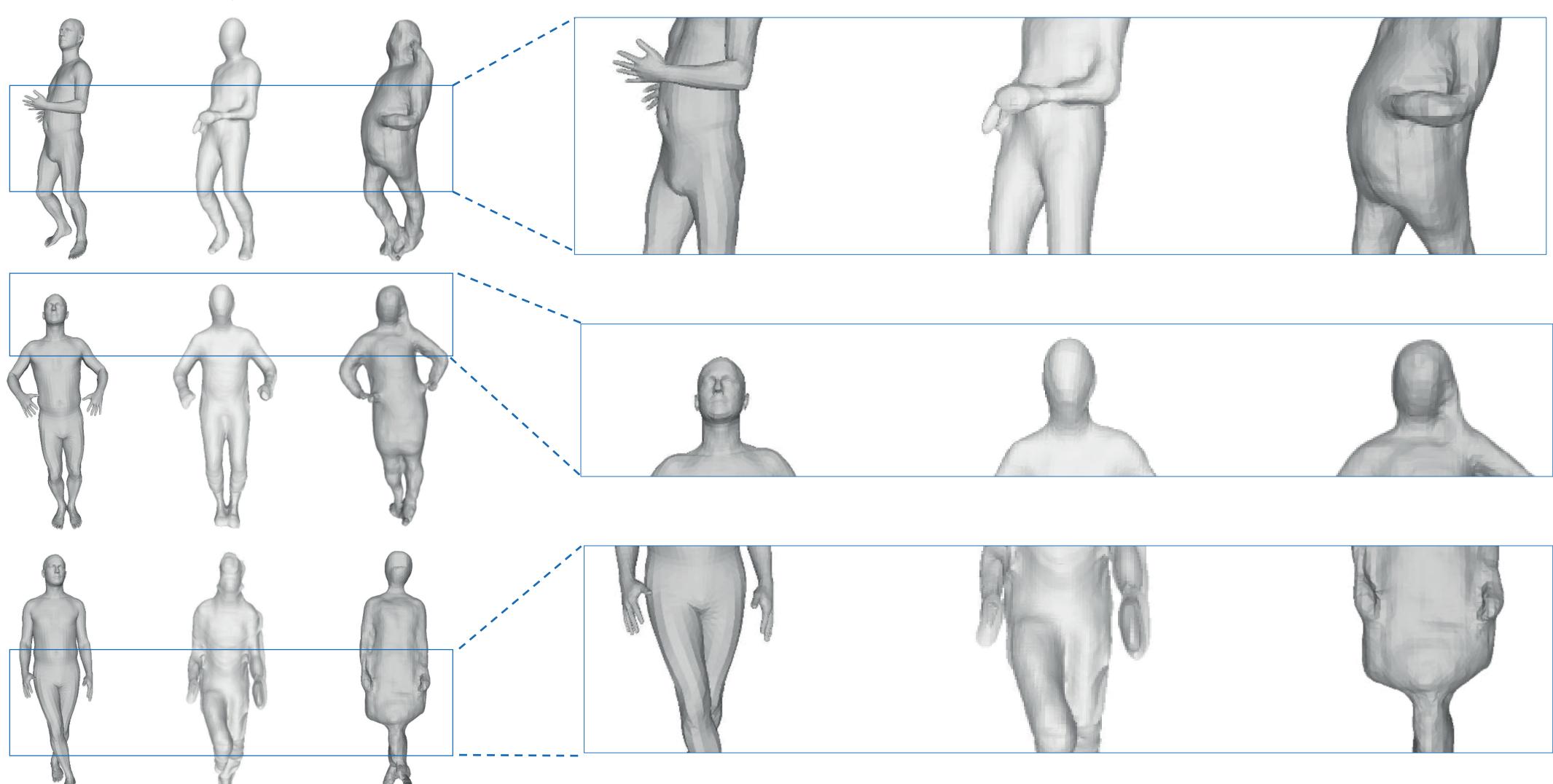
Qualitative results with videos

3D Shape

Textured 3D Shape

Comparaison with state of the art



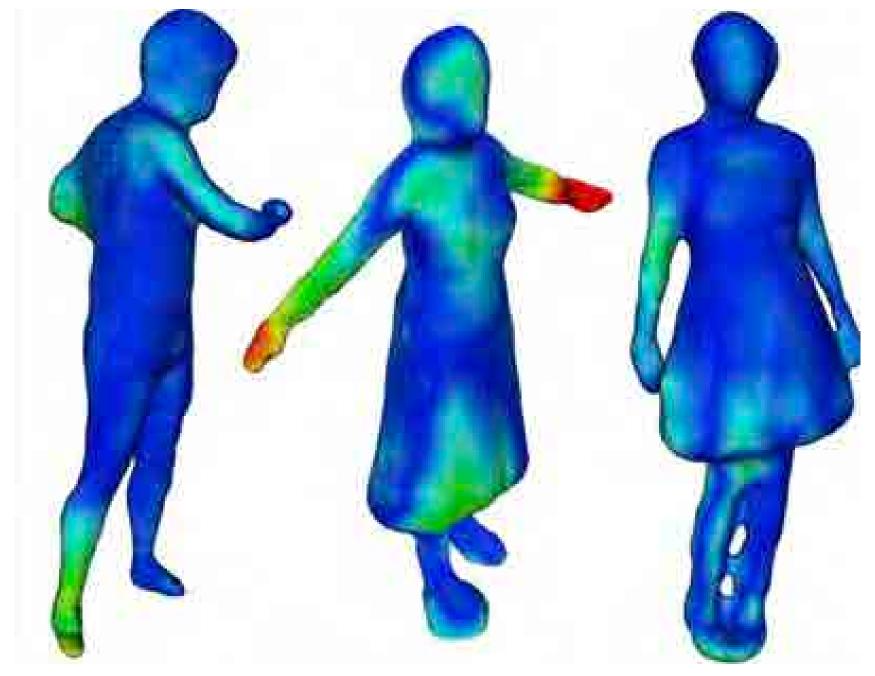


3D HUMANS dataset

meshes in **realistic 3D environments**:

To numerically evaluate our method with realistic scenes, we also rendered our 3D

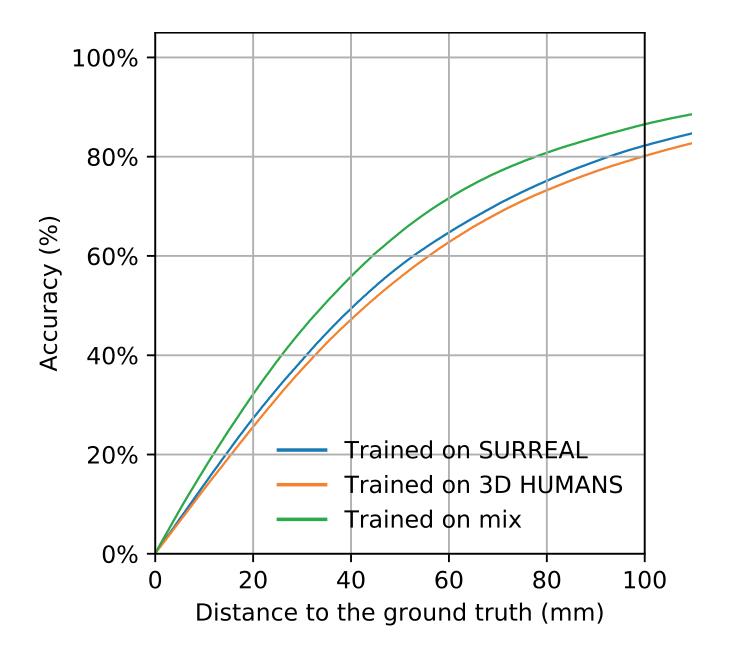
3D HUMANS dataset



Our results show that:

1) this realistic data is **more difficult** 2) adding synthetic training data from

SURREAL [12] helps generalisation.



[12] Varol et al. Learning from Synthetic Humans. CVPR 2017

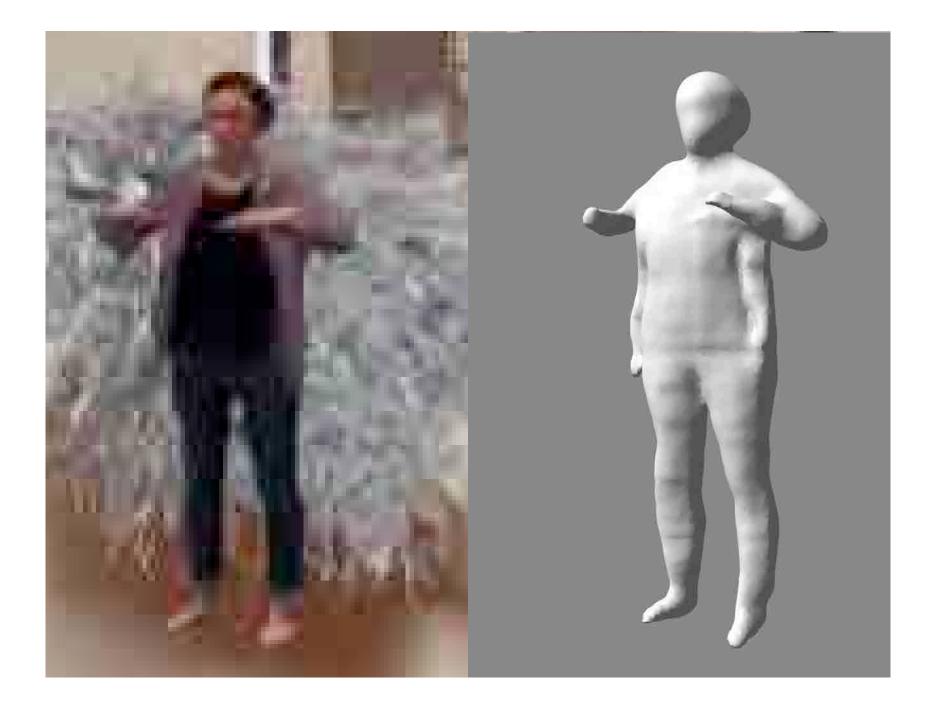
Results in the wild

3D Shape

Textured 3D Shape

4.Ongoing research and applications

3D surface prediction



Ongoing work:

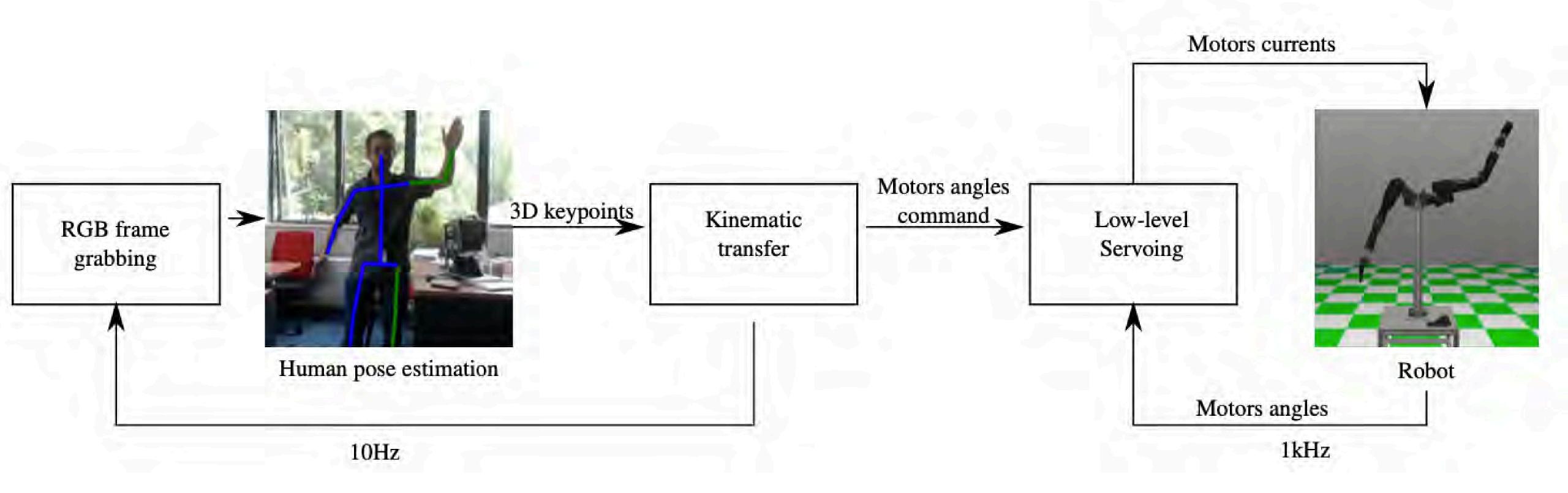
- More robust & accurate with video
- Scenes with multiple persons
- Occlusions

Our human pose detector:

- Full-body pose
- 2D and 3D pose
- Multi-person
- Real-time
- State-of-art in 3D pose

LCR-Net: Localization-Classification-Regression for. Human Pose. Rogez et al. CVPR 2017 LCR-Net++: Multi-person 2D and 3D Pose Detection in Natural Images. Rogez et al. TPAMI 2019

Robot animation from human pose



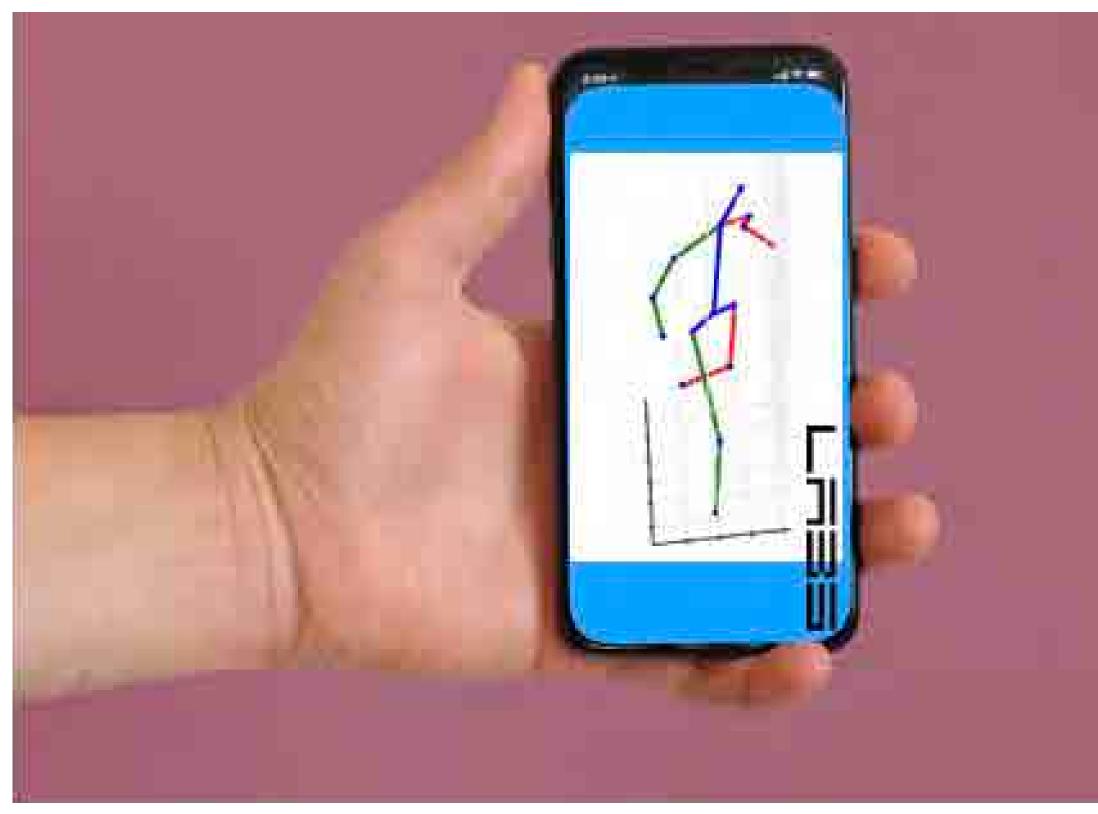
2019

Fast human pose on mobile

Ongoing work:

- Robust & faster on Mobile
- Lighweight model
- **Distillation** method to train a smaller

network to perform as well as a big one



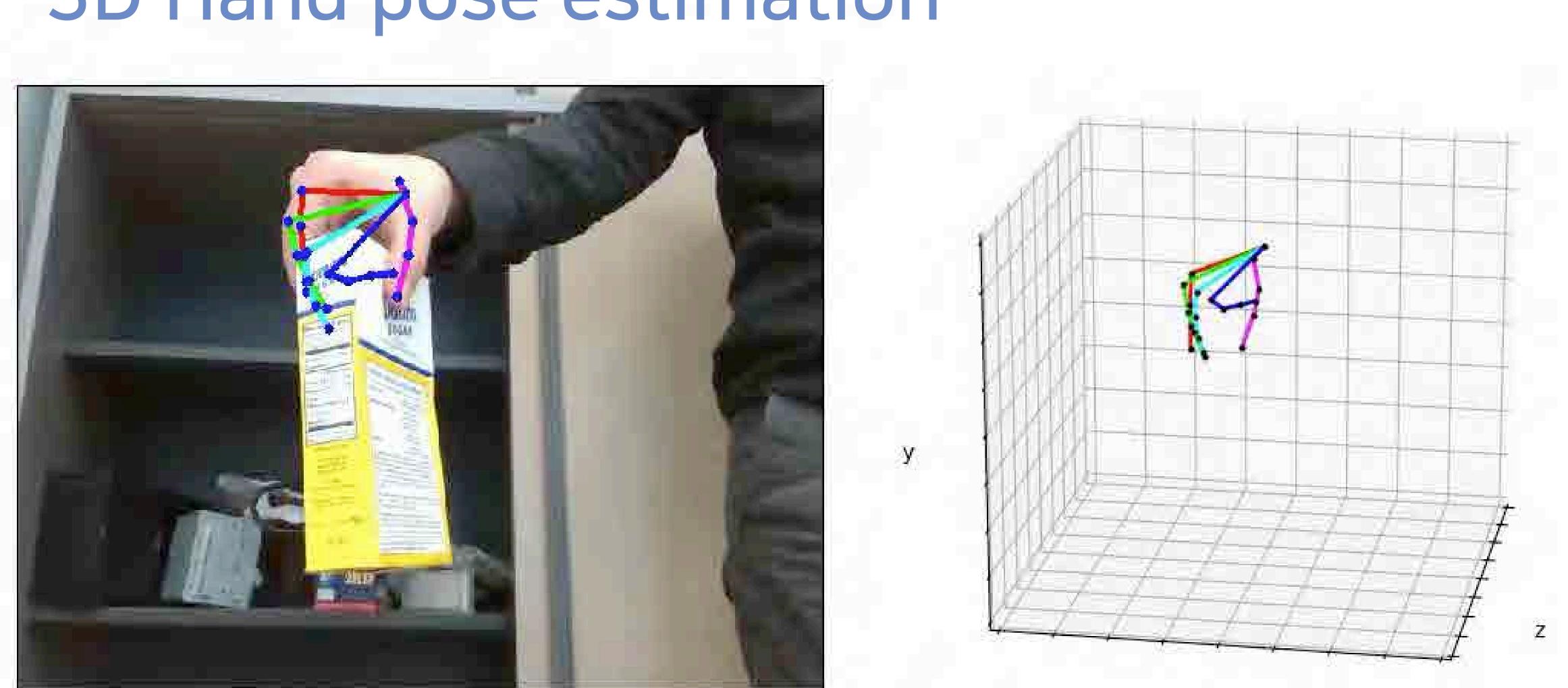
Action Recognition

Human can understand Mimes... without context & objects

Current methods are biased and not robust

Further Understanding Human Actions. Weinzaepfel and Rogez, to be submitted, 2019

3D Hand pose estimation



Results obtained after training on very limited data: only 3 subjects holding 4 differents objects and no synthetic data...

2019

3D Hand pose estimation

ICCV HANDS 2019 challenge

Team Name	EXTRAP. 🔺	INTERP.	OBJECT 🔺	
& meat	24.74 (1)	6.70 (3)	27.36 (2)	
NLE	29.19 (2)	4.06 (1)	18.39 (1)	
BT	31.51 (3)	19.15 (5)	30.59 (3)	
Hasson et al, CVPR'19	38.42 (4)	7.38 (4)	31.82 (4)	
BT	41.81 (5)	23.52 (6)	72.70 (8)	
kin	49.64 (6)	46.78 (7)	53.79 (6)	
kin	57.45 (7)	47.82 (8)	54.81 (7)	
xteam	80.06 (8)	5.66 (2)	45.34 (5)	
citrus	80.06 (8)	5.66 (2)	45.34 (5)	

- 50.05 (7)
- 29.84 (5)
- 29.84 (5)

- 1st in interpolation, i.e. when object & hand pose have been seen before, or when object only is known

- Overall we outperform CVPR'19 paper by a large margin !

5. Take-home message

Take-home message

Pose detection: localization + 3D/2D pose

- model **multi-modal** distributions
- **holistic** full-body approach

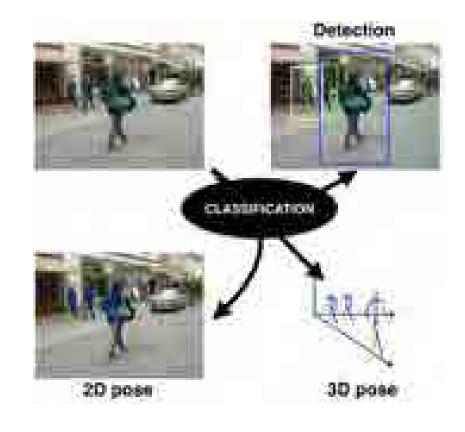
LCR-Net with class-specific regression: - reduced number of classes (computation), refine the 2D/3D pose - Very good interpolating, less in extrapolation

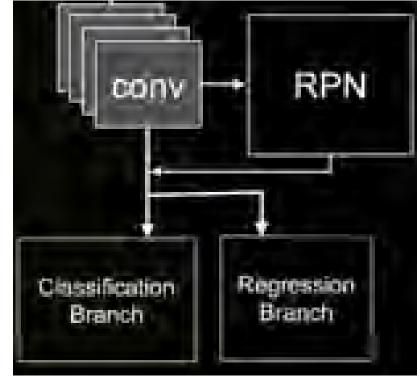
- Needs in-the-wild data!!

Mould representation for 3D surface:

- **detailed** shape including clothes (non-parametric)
- efficient and easier to handle in NN
- Also needs data!!

DEVIEW 2019





Collaborators

Philippe Weinzaepfel NAVER LABS Europe

Romain Bregier NAVER LABS Europe

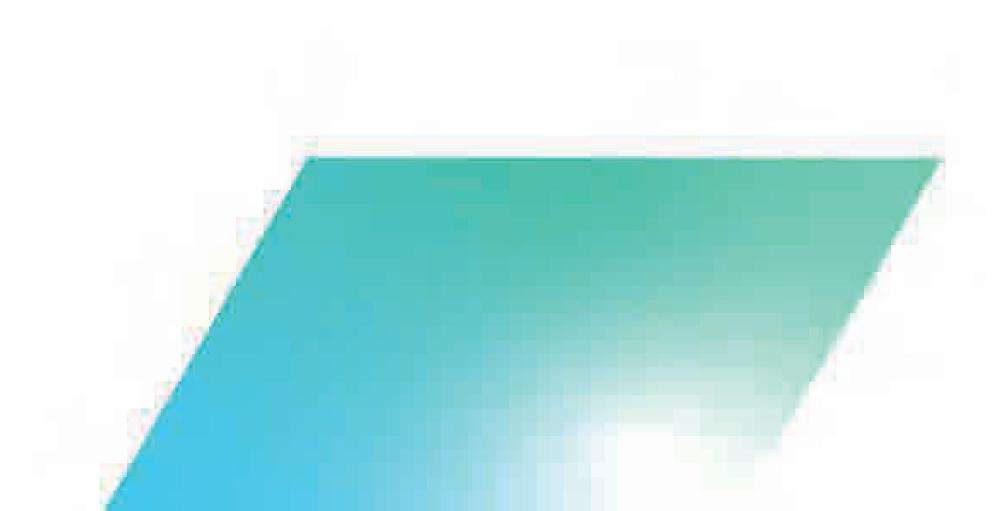
Hadrien Combaluzier NAVER LABS Europe

J.S. Franco Inria

Valentin Gabeur Inria / Google

Cordelia Schmid Inria / Google

Q&A



Thank You

